On a stochastic hyperbolic system in linear elasticity
dc.contributor | Virginia Tech | en |
dc.contributor.author | Kim, J. U. | en |
dc.contributor.department | Mathematics | en |
dc.date.accessed | 2014-05-27 | en |
dc.date.accessioned | 2014-05-28T18:35:04Z | en |
dc.date.available | 2014-05-28T18:35:04Z | en |
dc.date.issued | 2000-08 | en |
dc.description.abstract | In this paper we discuss the Cauchy problem for linear elasticity with a space-time white noise forcing term. We show that the solution can be represented by a formula analogous to the Riesz formula for solutions of a wave equation. The solution is a generalized stochastic process and is obtained as the limit of a sequence of ordinary stochastic processes. Our basic tool is the Hilbert space method combined with geometric properties of solutions inherent with a hyperbolic system. | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Kim, J. U., "On a stochastic hyperbolic system in linear elasticity," SIAM J. Math. Anal., 32(2), 304-322, (2000). DOI: 10.1137/s0036141099350377 | en |
dc.identifier.doi | https://doi.org/10.1137/s0036141099350377 | en |
dc.identifier.issn | 0036-1410 | en |
dc.identifier.uri | http://hdl.handle.net/10919/48142 | en |
dc.identifier.url | http://epubs.siam.org/doi/abs/10.1137/S0036141099350377 | en |
dc.language.iso | en | en |
dc.publisher | Siam Publications | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | generalized stochastic process | en |
dc.subject | gaussian process | en |
dc.subject | white noise | en |
dc.subject | hyperbolic system | en |
dc.subject | wave-equation | en |
dc.subject | white noise | en |
dc.subject | dimensions | en |
dc.subject | mathematics, applied | en |
dc.title | On a stochastic hyperbolic system in linear elasticity | en |
dc.title.serial | Siam Journal on Mathematical Analysis | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- s0036141099350377.pdf
- Size:
- 215.46 KB
- Format:
- Adobe Portable Document Format
- Description:
- Main article