VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Environmental reservoir dynamics predict global infection patterns and population impacts for the fungal disease white-nose syndrome

dc.contributor.authorHoyt, Joseph R.en
dc.contributor.authorLangwig, Kate E.en
dc.contributor.authorSun, Kepingen
dc.contributor.authorParise, Katy L.en
dc.contributor.authorLi, Aoqiangen
dc.contributor.authorWang, Yujuanen
dc.contributor.authorHuang, Xiaobinen
dc.contributor.authorWorledge, Lisaen
dc.contributor.authorMiller, Helenen
dc.contributor.authorWhite, J. Paulen
dc.contributor.authorKaarakka, Heather M.en
dc.contributor.authorRedell, Jennifer A.en
dc.contributor.authorGörföl, Tamásen
dc.contributor.authorBoldogh, Sándor Andrásen
dc.contributor.authorFukui, Daien
dc.contributor.authorSakuyama, Munekien
dc.contributor.authorYachimori, Syuujien
dc.contributor.authorSato, Akiyoshien
dc.contributor.authorDalannast, Munkhnasten
dc.contributor.authorJargalsaikhan, Ariunbolden
dc.contributor.authorBatbayar, Nyambayaren
dc.contributor.authorYovel, Yossien
dc.contributor.authorAmichai, Eranen
dc.contributor.authorNatradze, Ioseben
dc.contributor.authorFrick, Winifred E.en
dc.contributor.authorFoster, Jeffrey T.en
dc.contributor.authorFeng, Jiangen
dc.contributor.authorKilpatrick, A. Marmen
dc.contributor.departmentBiological Sciencesen
dc.date.accessioned2020-03-20T13:05:41Zen
dc.date.available2020-03-20T13:05:41Zen
dc.date.issued2020-03-16en
dc.description.abstractDisease outbreaks and pathogen introductions can have significant effects on host populations, and the ability of pathogens to persist in the environment can exacerbate disease impacts by fueling sustained transmission, seasonal epidemics, and repeated spillover events. While theory suggests that the presence of an environmental reservoir increases the risk of host declines and threat of extinction, the influence of reservoir dynamics on transmission and population impacts remains poorly described. Here we show that the extent of the environmental reservoir explains broad patterns of host infection and the severity of disease impacts of a virulent pathogen. We examined reservoir and host infection dynamics and the resulting impacts of Pseudogymnoascus destructans, the fungal pathogen that causes white-nose syndrome, in 39 species of bats at 101 sites across the globe. Lower levels of pathogen in the environment consistently corresponded to delayed infection of hosts, fewer and less severe infections, and reduced population impacts. In contrast, an extensive and persistent environmental reservoir led to early and widespread infections and severe population declines. These results suggest that continental differences in the persistence or decay of P. destructans in the environment altered infection patterns in bats and influencedwhether host populations were stable or experienced severe declines from this disease. Quantifying the impact of the environmental reservoir on disease dynamics can provide specific targets for reducing pathogen levels in the environment to prevent or control future epidemics.en
dc.description.sponsorshipFinancial support was provided by grants from the National Science Foundation (IIA-1415092, DEB-1911853, DEB-1115895, and DEB- 1336290), US Fish and Wildlife Service (F15AP00975), National Natural Science Foundation of China (31961123001), Program for Introducing Talents to Universities (B16011), Jilin Provincial Natural Science Foundation (20180101272JC), Mongolian National University of Education, and Japan Society for the Promotion of Science KAKENHI (JP16K00568). We acknowledge support from the Northeast Normal University bat lab, S. Yamada, K. Parthasarathy, T. Aoi, A. Hamada, R. Sasaki, M. Komukai, M. Maita, K. Osawa, Y. Osawa, T. Ishibashi, Y. Takada, A. Sugiyama, K. Sakuyama, H. Sakuyama, T. Matsuzaka, S. Nakamushikabe, T. Hutson, S. Harris, J. Harris, C. Vine, B. Cornes, P. Briggs, C. Morris, K. Stoner, I. Dombi, D. Kováts, J. Mészáros, and the UK National Bat Monitoring Programme run by the Bat Conservation Trust, in partnership with the Joint Nature Conservation Committee and supported by Natural England, Natural Resources Wales, Northern Ireland Environment Agency, and Scottish Natural Heritage.en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1073/pnas.1914794117en
dc.identifier.urihttp://hdl.handle.net/10919/97386en
dc.language.isoenen
dc.publisherNational Academy of Sciencesen
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.subjectenvironmental pathogen reservoiren
dc.subjectglobal disease dynamicsen
dc.subjectwhite-nose syndromeen
dc.subjectPseudogymnoascus destructansen
dc.titleEnvironmental reservoir dynamics predict global infection patterns and population impacts for the fungal disease white-nose syndromeen
dc.title.serialPNASen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1914794117.full.pdf
Size:
5.34 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Item-specific license agreed upon to submission
Description: