Pyramidal and toroidal water drops after impact on a solid surface
dc.contributor | Virginia Tech | en |
dc.contributor.author | Renardy, Yuriko Y. | en |
dc.contributor.author | Popinet, S. | en |
dc.contributor.author | Duchemin, L. | en |
dc.contributor.author | Renardy, Michael J. | en |
dc.contributor.author | Zaleski, S. | en |
dc.contributor.author | Josserand, C. | en |
dc.contributor.author | Drumright-Clarke, M. A. | en |
dc.contributor.author | Richard, D. | en |
dc.contributor.author | Clanet, C. | en |
dc.contributor.author | Quere, D. | en |
dc.contributor.department | Mathematics | en |
dc.date.accessed | 2014-07-15 | en |
dc.date.accessioned | 2014-07-21T15:49:38Z | en |
dc.date.available | 2014-07-21T15:49:38Z | en |
dc.date.issued | 2003-06 | en |
dc.description.abstract | Superhydrophobic surfaces generate very high contact angles as a result of their microstructure. The impact of a water drop on such a surface shows unusual features, such as total rebound at low impact speed. We report experimental and numerical investigations of the impact of approximately spherical water drops. The axisymmetric free surface problem, governed by the Navier-Stokes equations, is solved numerically with a front-tracking marker-chain method on a square grid. Experimental observations at moderate velocities and capillary wavelength much less than the initial drop radius show that the drop evolves to a staircase pyramid and eventually to a torus. Our numerical simulations reproduce this effect. The maximal radius obtained in numerical simulations precisely matches the experimental value. However, the large velocity limit has not been reached experimentally or numerically. We discuss several complications that arise at large velocity: swirling motions observed in the cross-section of the toroidal drop and the appearance of a thin film in the centre of the toroidal drop. The numerical results predict the dry-out of this film for sufficiently high Reynolds and Weber numbers. When the drop rebounds, it has a top-heavy shape. In this final stage, the kinetic energy is a small fraction of its initial value. | en |
dc.description.sponsorship | The Petroleum Research Fund, administered by the ACS | en |
dc.identifier.citation | Renardy, Y.; Popinet, S.; Duchemin, L.; Renardy, M.; Zaleski, S.; Josserand, C.; Drumright-Clarke, M. A.; Richard, D.; Clanet, C.; Quere, D., "Pyramidal and toroidal water drops after impact on a solid surface," J. Fluid Mech. (2003), vol. 484, pp. 69-83. DOI: 10.1017/s0022112003004142 | en |
dc.identifier.doi | https://doi.org/10.1017/s0022112003004142 | en |
dc.identifier.issn | 0022-1120 | en |
dc.identifier.uri | http://hdl.handle.net/10919/49636 | en |
dc.identifier.url | http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=151513&fulltextType=RA&fileId=S0022112003004142 | en |
dc.language.iso | en_US | en |
dc.publisher | Cambridge University Press | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | flat surface | en |
dc.subject | mechanics | en |
dc.subject | physics, fluids & plasmas | en |
dc.title | Pyramidal and toroidal water drops after impact on a solid surface | en |
dc.title.serial | Journal of Fluid Mechanics | en |
dc.type | Article - Refereed | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- S0022112003004142a.pdf
- Size:
- 205.54 KB
- Format:
- Adobe Portable Document Format
- Description:
- Main article