Intergranular fracture in nanocrystalline metals

Files

TR Number

Date

2002-08-01

Journal Title

Journal ISSN

Volume Title

Publisher

American Physical Society

Abstract

Crack propagation studies in nanocrystalline Ni samples with mean grain sizes ranging from 5 to 12 nm are reported using atomistic simulations. For all grain sizes pure intergranular fracture is observed. Intergranular fracture is shown to proceed by the coalescence of microvoids formed at the grain boundaries ahead of the crack. The energy released during propagation is higher than the Griffith value, indicating an additional grain-boundary accommodation mechanism.

Description

Keywords

Molecular dynamics, Plastic behavior, Physics, Condensed matter

Citation

Farkas, D.; Van Swygenhoven, H.; Derlet, P. M., "Intergranular fracture in nanocrystalline metals," Phys. Rev. B 66, 060101(R) DOI: http://dx.doi.org/10.1103/PhysRevB.66.060101