Autoregressive Models of Background Errors for Chemical Data Assimilation
dc.contributor.author | Constantinescu, Emil M. | en |
dc.contributor.author | Chai, Tianfeng | en |
dc.contributor.author | Sandu, Adrian | en |
dc.contributor.author | Carmichael, Gregory R. | en |
dc.contributor.department | Computer Science | en |
dc.date.accessioned | 2013-06-19T14:35:45Z | en |
dc.date.available | 2013-06-19T14:35:45Z | en |
dc.date.issued | 2006-10-01 | en |
dc.description.abstract | The task of providing an optimal analysis of the state of the atmosphere requires the development of dynamic data-driven systems that efficiently integrate the observational data and the models. Data assimilation (DA) is the process of adjusting the states or parameters of a model in such a way that its outcome (prediction) is close, in some distance metric, to observed (real) states. It is widely accepted that a key ingredient of successful data assimilation is a realistic estimation of the background error distribution. This paper introduces a new method for estimating the background errors which are modeled using autoregressive processes. The proposed approach is computationally inexpensive and captures the error correlations along the flow lines. | en |
dc.format.mimetype | application/pdf | en |
dc.identifier | http://eprints.cs.vt.edu/archive/00000926/ | en |
dc.identifier.sourceurl | http://eprints.cs.vt.edu/archive/00000926/01/ar_background.pdf | en |
dc.identifier.trnumber | TR-06-22 | en |
dc.identifier.uri | http://hdl.handle.net/10919/19556 | en |
dc.language.iso | en | en |
dc.publisher | Department of Computer Science, Virginia Polytechnic Institute & State University | en |
dc.relation.ispartof | Computer Science Technical Reports | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | Numerical analysis | en |
dc.title | Autoregressive Models of Background Errors for Chemical Data Assimilation | en |
dc.type | Technical report | en |
dc.type.dcmitype | Text | en |
Files
Original bundle
1 - 1 of 1