VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Autoregressive Models of Background Errors for Chemical Data Assimilation

dc.contributor.authorConstantinescu, Emil M.en
dc.contributor.authorChai, Tianfengen
dc.contributor.authorSandu, Adrianen
dc.contributor.authorCarmichael, Gregory R.en
dc.contributor.departmentComputer Scienceen
dc.date.accessioned2013-06-19T14:35:45Zen
dc.date.available2013-06-19T14:35:45Zen
dc.date.issued2006-10-01en
dc.description.abstractThe task of providing an optimal analysis of the state of the atmosphere requires the development of dynamic data-driven systems that efficiently integrate the observational data and the models. Data assimilation (DA) is the process of adjusting the states or parameters of a model in such a way that its outcome (prediction) is close, in some distance metric, to observed (real) states. It is widely accepted that a key ingredient of successful data assimilation is a realistic estimation of the background error distribution. This paper introduces a new method for estimating the background errors which are modeled using autoregressive processes. The proposed approach is computationally inexpensive and captures the error correlations along the flow lines.en
dc.format.mimetypeapplication/pdfen
dc.identifierhttp://eprints.cs.vt.edu/archive/00000926/en
dc.identifier.sourceurlhttp://eprints.cs.vt.edu/archive/00000926/01/ar_background.pdfen
dc.identifier.trnumberTR-06-22en
dc.identifier.urihttp://hdl.handle.net/10919/19556en
dc.language.isoenen
dc.publisherDepartment of Computer Science, Virginia Polytechnic Institute & State Universityen
dc.relation.ispartofComputer Science Technical Reportsen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectNumerical analysisen
dc.titleAutoregressive Models of Background Errors for Chemical Data Assimilationen
dc.typeTechnical reporten
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ar_background.pdf
Size:
929.55 KB
Format:
Adobe Portable Document Format