The role of confinement on stress-driven grain boundary motion in nanocrystalline aluminum thin films

dc.contributorVirginia Tech. Department of Materials Science and Engineeringen
dc.contributorUniversity of Pennsylvania. Department of Materials Science and Engineeringen
dc.contributor.authorGianola, Daniel S.en
dc.contributor.authorFarkas, Dianaen
dc.contributor.authorGamarra, Martinen
dc.contributor.authorHe, Mo-rigenen
dc.contributor.departmentMaterials Science and Engineering (MSE)en
dc.date.accessed2015-04-24en
dc.date.accessioned2015-05-21T19:47:20Zen
dc.date.available2015-05-21T19:47:20Zen
dc.date.issued2012-12-15en
dc.description.abstract3D molecular dynamics simulations are performed to investigate the role of microstructural confinement on room temperature stress-driven grain boundary (GB) motion for a general population of GBs in nanocrystalline Al thin films. Detailed analysis and comparison with experimental results reveal how coupled GB migration and GB sliding are manifested in realistic nanoscale networks of GBs. The proximity of free surfaces to GBs plays a significant role in their mobility and results in unique surface topography evolution. We highlight the effects of microstructural features, such as triple junctions, as constraints to otherwise uninhibited GB motion. We also study the pinning effects of impurities segregated to GBs that hinder their motion. Finally, the implications of GB motion as a deformation mechanism governing the mechanical behavior of nanocrystalline materials are discussed. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4770357]en
dc.description.sponsorshipNational Science Foundation (U.S.). Division of Materials Research. Materials World Networken
dc.description.sponsorshipUniversity of Pennsylvaniaen
dc.format.extent11 pagesen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationGianola, Daniel S., Farkas, Diana, Gamarra, Martin, He, Mo-rigen (2012). The role of confinement on stress-driven grain boundary motion in nanocrystalline aluminum thin films. Journal of Applied Physics, 112(12). doi: 10.1063/1.4770357en
dc.identifier.doihttps://doi.org/10.1063/1.4770357en
dc.identifier.issn0021-8979en
dc.identifier.urihttp://hdl.handle.net/10919/52401en
dc.identifier.urlhttp://scitation.aip.org/content/aip/journal/jap/112/12/10.1063/1.4770357en
dc.language.isoen_USen
dc.publisherAmerican Institute of Physicsen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectFree surfacesen
dc.subjectThin film growthen
dc.subjectMolecular dynamicsen
dc.subjectTopographyen
dc.subjectThin film structureen
dc.titleThe role of confinement on stress-driven grain boundary motion in nanocrystalline aluminum thin filmsen
dc.title.serialJournal of Applied Physicsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2012_The_role_of_confinement_stress_driven.pdf
Size:
11.55 MB
Format:
Adobe Portable Document Format