Combined Analysis of Hydrogen and Oxygen 102.6 nm Emission at Mars

dc.contributor.authorChaffin, Michael S.en
dc.contributor.authorDeighan, Justinen
dc.contributor.authorJain, Sonalen
dc.contributor.authorHolsclaw, Gregen
dc.contributor.authorAlMazmi, Hooren
dc.contributor.authorChirakkil, Krishnaprasaden
dc.contributor.authorCorreira, Johnen
dc.contributor.authorEngland, Scott L.en
dc.contributor.authorEvans, J. Scotten
dc.contributor.authorFillingim, Matten
dc.contributor.authorLillis, Roben
dc.contributor.authorLootah, Fatmaen
dc.contributor.authorRaghuram, Susarlaen
dc.contributor.authorEparvier, Franken
dc.contributor.authorThiemann, Eden
dc.contributor.authorCurry, Shannonen
dc.contributor.authorAlMatroushi, Hessaen
dc.date.accessioned2023-05-16T15:06:49Zen
dc.date.available2023-05-16T15:06:49Zen
dc.date.issued2022-08en
dc.description.abstractWater is lost from the Mars upper atmosphere to space as hydrogen and oxygen, both of which can be observed in scattered ultraviolet sunlight at 102.6 nm. We present Emirates Mars Mission Emirates Mars Ultraviolet Spectrometer (EMM/EMUS) insertion orbit observations of this airglow, resolving the independent altitude contributions of H and O for the first time. We present the first airglow modeling of the complete H and O 102.6 nm system and the first 3D azimuthally symmetric modeling of the O emission, retrieving temperatures and densities typical of northern spring. Our model reproduces the emission well above 200 km, but does not incorporate partial frequency redistribution needed to reproduce the observed O brightness at lower altitudes and on the disk. These results support future EMM/EMUS science orbit retrievals of H loss and the use of 102.6 nm observations to constrain planetary atmospheres across the solar system.en
dc.description.notesFunding for development of the EMM mission was provided by the UAE government, and to co-authors outside of the UAE by MBRSC. Funding for the development of the radiative transfer model was provided by EMM/MBRSC and by NASA through the MAVEN mission. SR and KC are supported by the grant 8474000332-KU-CU-LASP Space Sci.en
dc.description.sponsorshipUAE government; EMM/MBRSC; NASA through the MAVEN mission; KU-CU-LASP Space Sci. [8474000332]en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1029/2022GL099851en
dc.identifier.eissn1944-8007en
dc.identifier.issue16en
dc.identifier.othere2022GL099851en
dc.identifier.urihttp://hdl.handle.net/10919/115069en
dc.identifier.volume49en
dc.language.isoenen
dc.publisherAmerican Geophysical Unionen
dc.rightsCreative Commons Attribution-NonCommercial 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/en
dc.subjectMarsen
dc.subjectaeronomyen
dc.subjectultravioleten
dc.titleCombined Analysis of Hydrogen and Oxygen 102.6 nm Emission at Marsen
dc.title.serialGeophysical Research Lettersen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ChaffinCombined.pdf
Size:
1.05 MB
Format:
Adobe Portable Document Format
Description:
Published version