Comparison of short-term streamflow forecasting using stochastic time series, neural networks, process-based, and Bayesian models
Files
TR Number
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Streamflow forecasts are essential for water resources management. Although there are many methods for forecasting streamflow, real-time forecasts remain challenging. This study evaluates streamflow forecasts using a process-based model (Soil and Water Assessment Tool-Variable Source Area model-SWAT-VSA), a stochastic model (Artificial Neural Network -ANN), an Auto-Regressive Moving-Average (ARMA) model, and a Bayesian ensemble model that utilizes the SWAT-VSA, ANN, and ARMA results. Streamflow is forecast from 1 to 8 d, forced with Quantitative Precipitation Forecasts from the US National Weather Service. Of the individual models, SWAT-VSA and the ANN provide better predictions of total streamflow (NSE 0.60-0.70) and peak flow, but underpredicted low flows. During the forecast period the ANN had the highest predictive power (NSE 0.44-0.64), however all three models underpredicted peak flow. The Bayesian ensemble forecast streamflow with the most skill for all forecast lead times (NSE 0.49-0.67) and provided a quantification of prediction uncertainty.