VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Information set supported deep learning architectures for improving noisy image classification

Files

TR Number

Date

2023-03

Journal Title

Journal ISSN

Volume Title

Publisher

Nature Portfolio

Abstract

Deep learning models have been widely used in many supervised learning applications. However, these models suffer from overfitting due to various types of uncertainty with deteriorating performance when facing data biases, class imbalance, or noise propagation. The Information-Set Deep learning (ISDL) architectures with four variants are developed by integrating information set theory and deep learning principles to address the critical problem of the absence of robust deep learning models. There is a description of the ISDL architectures, learning algorithms, and analytic workflows. The performance of the ISDL models and standard architectures is evaluated using a noise-corrupted benchmark dataset. The experimental results show that the ISDL models can efficiently handle noise-dominated uncertainty and outperform peer architectures.

Description

Keywords

Image classification, Deep learning

Citation