Multi-Dimensional Characterization of Temporal Data Mining on Graphics Processors

Files

paper.pdf (451.82 KB)
Downloads: 275

TR Number

TR-09-01

Date

2009

Journal Title

Journal ISSN

Volume Title

Publisher

Department of Computer Science, Virginia Polytechnic Institute & State University

Abstract

Through the algorthmic design patterns of data parallelism and task parallelism, the graphics processing unit (GPU) offers the potential to vastly accelerate discovery and innovation across a multitude of disciplines. For example, the exponential growth in data volume now presents an obstacle for high-throughput data mining in fields such as neuroinformatics and bioinformatics. As such, we present a characterization of a MapReduce-based data-mining application on a general-purpose GPU (GPGPU). Using neuroscience as the application vehicle, the results of our multi-dimensional performance evaluation show that a “one-size-fits-all” approach maps poorly across different GPGPU cards. Rather, a high-performance implementation on the GPGPU should factor in the 1) problem size, 2) type of GPU, 3) type of algorithm, and 4) data-access method when determining the type and level of parallelism. To guide the GPGPU programmer towards optimal performance within such a broad design space, we provide eight general performance characterizations of our data-mining application.

Description

Keywords

Algorithms, Data structures

Citation