The Global-Scale Observations of the Limb and Disk (GOLD) Mission

dc.contributor.authorEastes, R. W.en
dc.contributor.authorMcClintock, William E.en
dc.contributor.authorBurns, A. G.en
dc.contributor.authorAnderson, D. N.en
dc.contributor.authorAndersson, L.en
dc.contributor.authorCodrescu, M.en
dc.contributor.authorCorreira, J. T.en
dc.contributor.authorDaniell, R. E.en
dc.contributor.authorEngland, Scott L.en
dc.contributor.authorEvans, J. S.en
dc.contributor.authorHarvey, J.en
dc.contributor.authorKrywonos, A.en
dc.contributor.authorLumpe, J. D.en
dc.contributor.authorRichmond, A. D.en
dc.contributor.authorRusch, D. W.en
dc.contributor.authorSiegmund, O. H.en
dc.contributor.authorSolomon, S. C.en
dc.contributor.authorStrickland, D. J.en
dc.contributor.authorWoods, T. N.en
dc.contributor.authorAksnes, A.en
dc.contributor.authorBudzien, S. A.en
dc.contributor.authorDymond, K. F.en
dc.contributor.authorEparvier, F. G.en
dc.contributor.authorMartinis, C. R.en
dc.contributor.authorOberheide, J.en
dc.contributor.departmentAerospace and Ocean Engineeringen
dc.date.accessioned2019-09-20T14:36:58Zen
dc.date.available2019-09-20T14:36:58Zen
dc.date.issued2017-10en
dc.description.abstractThe Earth's thermosphere and ionosphere constitute a dynamic system that varies daily in response to energy inputs from above and from below. This system can exhibit a significant response within an hour to changes in those inputs, as plasma and fluid processes compete to control its temperature, composition, and structure. Within this system, short wavelength solar radiation and charged particles from the magnetosphere deposit energy, and waves propagating from the lower atmosphere dissipate. Understanding the global-scale response of the thermosphere-ionosphere (T-I) system to these drivers is essential to advancing our physical understanding of coupling between the space environment and the Earth's atmosphere. Previous missions have successfully determined how the "climate" of the T-I system responds. The Global-scale Observations of the Limb and Disk (GOLD) mission will determine how the "weather" of the T-I responds, taking the next step in understanding the coupling between the space environment and the Earth's atmosphere. Operating in geostationary orbit, the GOLD imaging spectrograph will measure the Earth's emissions from 132 to 162 nm. These measurements will be used image two critical variables-thermospheric temperature and composition, near 160 km-on the dayside disk at half-hour time scales. At night they will be used to image the evolution of the low latitude ionosphere in the same regions that were observed earlier during the day. Due to the geostationary orbit being used the mission observes the same hemisphere repeatedly, allowing the unambiguous separation of spatial and temporal variability over the Americas.en
dc.description.notesThanks to the managers, engineers, and technicians at the Laboratory for Atmospheric and Space Physics for their contributions to the design, fabrication, and testing of the GOLD instrument. Their expertise and efforts transformed the GOLD concept into an exceptionally capable scientific instrument. This work was supported by the National Aeronautics and Space Administration's Explorer Program through contract NNG19PQ28C to the University of Central Florida.en
dc.description.sponsorshipNational Aeronautics and Space Administration's Explorer Program [NNG19PQ28C]en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1007/s11214-017-0392-2en
dc.identifier.eissn1572-9672en
dc.identifier.issn0038-6308en
dc.identifier.issue1-2en
dc.identifier.urihttp://hdl.handle.net/10919/93943en
dc.identifier.volume212en
dc.language.isoenen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectUltravioleten
dc.subjectThermosphereen
dc.subjectIonosphereen
dc.subjectImagingen
dc.subjectRemote sensingen
dc.subjectSatelliteen
dc.titleThe Global-Scale Observations of the Limb and Disk (GOLD) Missionen
dc.title.serialSpace Science Reviewsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.dcmitypeStillImageen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Eastes2017_Article_TheGlobal-ScaleObservationsOfT.pdf
Size:
2.22 MB
Format:
Adobe Portable Document Format
Description: