FHIRViz: Multi-Agent Platform for FHIR Visualization to Advance Healthcare Analytics

dc.contributor.authorALMutairi, Mariamen
dc.contributor.authorAlKulaib, Lulwahen
dc.contributor.authorWang, Shengkunen
dc.contributor.authorChen, Zhiqianen
dc.contributor.authorAlmutairi, Youssifen
dc.contributor.authorAlenazi, Thameren
dc.contributor.authorLuther, Kurten
dc.contributor.authorLu, Chang-Tienen
dc.date.accessioned2025-01-09T17:35:56Zen
dc.date.available2025-01-09T17:35:56Zen
dc.date.issued2024-11-22en
dc.date.updated2025-01-01T08:53:18Zen
dc.description.abstractThe shift to electronic health records (EHRs) has enhanced patient care and research, but data sharing and complex clinical terminology remain challenges. The Fast Healthcare Interoperability Resource (FHIR) addresses interoperability issues, though extracting insights from FHIR data is still difficult. Traditional analytics often miss critical clinical context, and managing FHIR data requires advanced skills that are in short supply. This study presents FHIRViz, a novel analytics tool that integrates FHIR data with a semantic layer via a knowledge graph. It employs a large language model (LLM) system to extract insights and visualize them effectively. A retrieval vector store improves performance by saving successful generations for fine-tuning. FHIRViz translates clinical queries into actionable insights with high accuracy. Results show FHIRViz with GPT-4 achieving 92.62% accuracy, while Gemini 1.5 Pro reaches 89.34%, demonstrating the tool’s potential in overcoming healthcare data analytics challenges.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1145/3698587.3701392en
dc.identifier.urihttps://hdl.handle.net/10919/124008en
dc.language.isoenen
dc.publisherACMen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.holderThe author(s)en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.titleFHIRViz: Multi-Agent Platform for FHIR Visualization to Advance Healthcare Analyticsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
3698587.3701392.pdf
Size:
7.55 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Item-specific license agreed upon to submission
Description: