A Positive Answer on Nirenberg’s Problem on Expansive Mappings in Hilbert Spaces

dc.contributor.authorAsfaw, Teffera M.en
dc.date.accessioned2022-03-21T11:48:21Zen
dc.date.available2022-03-21T11:48:21Zen
dc.date.issued2022-03-17en
dc.date.updated2022-03-20T08:00:09Zen
dc.description.abstractNirenberg proposed a problem as to whether or not a continuous and expansive operator T : X⟶X (where X is a Hilbert space) is surjective if R(T)∘ ≠∅. I shall give a positive answer for the problem provided that R(T)∘ is unbounded. For contents related to this paper, the reader is referred to the remarks and the study of Asfaw (2021). The present paper gives a complete answer for the problem that has been open for about 47 years.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationTeffera M. Asfaw, “A Positive Answer on Nirenberg’s Problem on Expansive Mappings in Hilbert Spaces,” Abstract and Applied Analysis, vol. 2022, Article ID 9487405, 5 pages, 2022. doi:10.1155/2022/9487405en
dc.identifier.doihttps://doi.org/10.1155/2022/9487405en
dc.identifier.urihttp://hdl.handle.net/10919/109362en
dc.language.isoenen
dc.publisherHindawien
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.holderCopyright © 2022 Teffera M. Asfaw. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.titleA Positive Answer on Nirenberg’s Problem on Expansive Mappings in Hilbert Spacesen
dc.title.serialAbstract and Applied Analysisen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
AAA.2022.9487405.pdf
Size:
299.11 KB
Format:
Adobe Portable Document Format
Description:
Published version
Name:
AAA.2022.9487405.xml
Size:
4.04 KB
Format:
Extensible Markup Language
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: