VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Multi-Label Zero-Shot Product Attribute-Value Extraction

dc.contributor.authorGong, Jiayingen
dc.contributor.authorEldardiry, Hodaen
dc.date.accessioned2024-06-04T18:49:13Zen
dc.date.available2024-06-04T18:49:13Zen
dc.date.issued2024-05-13en
dc.date.updated2024-06-01T08:00:10Zen
dc.description.abstractE-commerce platforms should provide detailed product descriptions (attribute values) for effective product search and recommendation. However, attribute value information is typically not available for new products. To predict unseen attribute values, large quantities of labeled training data are needed to train a traditional supervised learning model. Typically, it is difficult, time-consuming, and costly to manually label large quantities of new product profiles. In this paper, we propose a novel method to efficiently and effectively extract unseen attribute values from new products in the absence of labeled data (zero-shot setting).We propose HyperPAVE, a multilabel zero-shot attribute value extraction model that leverages inductive inference in heterogeneous hypergraphs. In particular, our proposed technique constructs heterogeneous hypergraphs to capture complex higher-order relations (i.e. user behavior information) to learn more accurate feature representations for graph nodes. Furthermore, our proposed HyperPAVE model uses an inductive link prediction mechanism to infer future connections between unseen nodes. This enables HyperPAVE to identify new attribute values without the need for labeled training data. We conduct extensive experiments with ablation studies on different categories of the MAVE dataset. The results demonstrate that our proposed HyperPAVE model significantly outperforms existing classificationbased, generation-based large language models for attribute value extraction in the zero-shot setting.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1145/3589334.3645649en
dc.identifier.urihttps://hdl.handle.net/10919/119265en
dc.language.isoenen
dc.publisherACMen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.holderThe author(s)en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.titleMulti-Label Zero-Shot Product Attribute-Value Extractionen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
3589334.3645649.pdf
Size:
2.48 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Item-specific license agreed upon to submission
Description: