Sparse Approximate Inverses in Preconditioning Distributed Linear Systems

dc.contributor.departmentComputer Scienceen
dc.date.accessioned2013-06-19T14:35:55Zen
dc.date.available2013-06-19T14:35:55Zen
dc.date.issued1997-07-01en
dc.description.abstractUsing a direct approximation of sparse matrix inverse in preconditioning is viewed as a good alternative to the preconditioning techniques that require a matrix factorization. A sparse approximate inverse is easy to compute and apply, and it is suitable for parallel implementations. For distributed linear systems of varying difficulty, approximate block LU preconditioning using sparse approximate inverse techniques and an incomplete LU factorization used in Block-Jacobi preconditioning are compared.en
dc.format.mimetypeapplication/postscripten
dc.identifierhttp://eprints.cs.vt.edu/archive/00000468/en
dc.identifier.sourceurlhttp://eprints.cs.vt.edu/archive/00000468/01/TR-97-11.psen
dc.identifier.trnumberTR-97-11en
dc.identifier.urihttp://hdl.handle.net/10919/19968en
dc.language.isoenen
dc.publisherDepartment of Computer Science, Virginia Polytechnic Institute & State Universityen
dc.relation.ispartofHistorical Collection(Till Dec 2001)en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.titleSparse Approximate Inverses in Preconditioning Distributed Linear Systemsen
dc.typeTechnical reporten
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Name:
TR-97-11.ps
Size:
126.13 KB
Format:
Postscript Files