Dual color optogenetic control of neural populations using low-noise, multishank optoelectrodes

dc.contributor.authorKampasi, Komalen
dc.contributor.authorEnglish, Daniel Fineen
dc.contributor.authorSeymour, Johnen
dc.contributor.authorStark, Eranen
dc.contributor.authorMcKenzie, Samen
dc.contributor.authorVöröslakos, Mihályen
dc.contributor.authorBuzsáki, Györgyen
dc.contributor.authorWise, Kensall D.en
dc.contributor.authorYoon, Euisiken
dc.contributor.departmentSchool of Neuroscienceen
dc.date.accessioned2019-02-19T20:43:11Zen
dc.date.available2019-02-19T20:43:11Zen
dc.date.issued2018en
dc.description.abstractOptogenetics allows for optical manipulation of neuronal activity and has been increasingly combined with intracellular and extracellular electrophysiological recordings. Genetically-identified classes of neurons are optically manipulated, though the versatility of optogenetics would be increased if independent control of distinct neural populations could be achieved on a sufficient spatial and temporal resolution. We report a scalable multisite optoelectrode design that allows simultaneous optogenetic control of two spatially intermingled neuronal populations in vivo. We describe the design, fabrication, and assembly of low-noise, multisite/multicolor optoelectrodes. Each shank of the four-shank assembly is monolithically integrated with 8 recording sites and a dualcolor waveguide mixer with a 7 × 30 μm cross-section, coupled to 405 nm and 635 nm injection laser diodes (ILDs) via gradient-index (GRIN) lenses to meet optical and thermal design requirements. To better understand noise on the recording channels generated during diode-based activation, we developed a lumped-circuit modeling approach for EMI coupling mechanisms and used it to limit artifacts to amplitudes under 100 μV upto an optical output power of 450 μW. We implanted the packaged devices into the CA1 pyramidal layer of awake mice, expressing Channelrhodopsin-2 in pyramidal cells and ChrimsonR in paravalbumin-expressing interneurons, and achieved optical excitation of each cell type using sub-mW illumination. We highlight the potential use of this technology for functional dissection of neural circuits.en
dc.description.sponsorshipNational Institute of Healthen
dc.description.sponsorshipNIH: contract No. 1-U01-NS090526-01en
dc.description.sponsorshipNIH: ERC-2015- StG 679253en
dc.identifier.doihttps://doi.org/10.1038/s41378-018-0009-2en
dc.identifier.issue10en
dc.identifier.urihttp://hdl.handle.net/10919/87726en
dc.identifier.volume4en
dc.language.isoen_USen
dc.publisherNatureen
dc.rightsCreative Commons Attribution 3.0 United Statesen
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/en
dc.titleDual color optogenetic control of neural populations using low-noise, multishank optoelectrodesen
dc.title.serialMicrosystems & Nanoengineeringen
dc.typeArticle - Refereeden

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41378-018-0009-2.pdf
Size:
2.65 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Item-specific license agreed upon to submission
Description: