Toxicity of Particulate Matter from Incineration of Nanowaste

dc.contributor.authorVejerano, Eric P.en
dc.contributor.authorMa, Yanjunen
dc.contributor.authorHolder, Amara L.en
dc.contributor.authorPruden, Amyen
dc.contributor.authorElankumaran, Subbiahen
dc.contributor.authorMarr, Linsey C.en
dc.contributor.departmentCivil and Environmental Engineeringen
dc.date.accessed2015-04-15en
dc.date.accessioned2015-04-21T14:11:30Zen
dc.date.available2015-04-21T14:11:30Zen
dc.date.issued2015-01-13en
dc.description.abstractDisposal of some nanomaterial-containing waste by incineration and the subsequent formation of particulate matter (PM) along with hazardous combustion by-products are inevitable. The effect of nanomaterials on the toxicity of the PM is unknown. We assessed the oxidative potential (OP) and toxicity of PM resulting from the incineration of pure nanomaterials and of paper and plastic wastes containing Ag, NiO, TiO2, ceria, C60, Fe2O3, or CdSe/ZnS quantum dots (CdSe QD) at mass loadings ranging from 0.1 wt% to 10 wt%. We measured reactive oxygen species (ROS) using the dichlorofluorescein assay, and we also measured consumption of ascorbic acid, dithiothreitol (DTT), glutathione (GSH), or uric acid antioxidants from raw and solvent-extracted PM, denoted “cleaned PM”. We determined cytotoxicity and genotoxicity of PM to A549 human lung epithelial cells with the WST-1 cell viability and histone immunofluorescence assays, respectively. In most cases, the presence of nanomaterials in the waste did not significantly affect the OP of PM; however, PM derived from waste containing Ag, TiO2, and C60 had elevated ROS response in the GSH and DTT assays. The ratio of reduced to oxidized glutathione was significantly higher for cleaned PM compared to raw PM for almost all nanomaterials at almost all concentrations, indicating that combustion by-products adsorbed on raw PM play an important role in determining OP. The presence of nanomaterials did not significantly modify the cytotoxicity or genotoxicity of the PM. Different antioxidants used to assess OP had varying sensitivity towards organic compounds v. metals in PM. The presence of these seven nanomaterials at low concentrations in the waste stream is not expected to exacerbate the hazard posed by PM that is produced by incineration.en
dc.description.notesSupplementary information is included in a separate fileen
dc.description.notes2015 Royal Society of Chemistry Open Access Gold Articleen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationVejerano, E. P., Ma, Y., Holder, A. L., Pruden, A., Elankumaran, S., & Marr, L. C. (2015). Toxicity of particulate matter from incineration of nanowaste. Environmental Science: Nano, 2(2), 143-154. doi: 10.1039/C4EN00182Fen
dc.identifier.doihttps://doi.org/10.1039/C4EN00182Fen
dc.identifier.issn2051-8153en
dc.identifier.urihttp://hdl.handle.net/10919/51734en
dc.identifier.urlhttp://pubs.rsc.org/en/content/articlelanding/2015/en/c4en00182fen
dc.language.isoenen
dc.publisherThe Royal Society of Chemistryen
dc.rightsCreative Commons Attribution-NonCommercial 3.0 Unporteden
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/en
dc.subjectNanowaste incinerationen
dc.subjectNanoparticlesen
dc.subjectOxidative potentialen
dc.subjectCytotoxicityen
dc.subjectGenotoxicityen
dc.titleToxicity of Particulate Matter from Incineration of Nanowasteen
dc.title.serialEnvironmental Science: Nanoen
dc.typeArticle - Refereeden
dc.typeDataseten
dc.type.dcmitypeTexten
dc.type.dcmitypeDataseten

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2015_Vejerano_et_al.pdf
Size:
4.77 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
2015_Vejerano_et_al_SUPPLEMENT.pdf
Size:
456.29 KB
Format:
Adobe Portable Document Format
Description: