VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

An Input Normal Form Homotopy for the L2 Optimal Model Order Reduction Problem

Files

TR Number

TR-93-16

Date

1993-06-01

Journal Title

Journal ISSN

Volume Title

Publisher

Department of Computer Science, Virginia Polytechnic Institute & State University

Abstract

In control system analysis and design, finding a reduced order model, optimal in the L-squared sense, to a given system model is a fundamental problem. The problem is very difficult without the global convergence of homotopy methods, and a homotopy based approach has been proposed. The issues are the number of degrees of freedom, the well posedness of the finite dimensional optimization problem, and the numerical robustness of the resulting homotopy algorithm. A homotopy algorithm based on the input normal form characterization of the reduced order model is developed here and is compared with the homotopy algorithms based on Hyland and Bernstein's optimal projection equations. The main conclusions are that the input normal form algorithm can be very efficient, but can also be very ill conditioned or even fail.

Description

Keywords

Citation