Behavioral and TMS Markers of Action Observation Might Reflect Distinct Neuronal Processes

TR Number

Date

2016-09-14

Journal Title

Journal ISSN

Volume Title

Publisher

Frontiers Media S.A.

Abstract

Transcranial magnetic stimulation (TMS) studies have shown that observing an action induces muscle-specific changes in corticospinal excitability. From a signal detection theory standpoint, this pattern can be related to sensitivity, which here would measure the capacity to distinguish between two action observation conditions. In parallel to these TMS studies, action observation has also been linked to behavioral effects such as motor priming and interference. It has been hypothesized that behavioral markers of action observation could be related to TMS markers and thus represent a potentially cost-effective mean of assessing the functioning of the action-perception system. However, very few studies have looked at possible relationships between these two measures. The aim of this study was to investigate if individual differences in sensitivity to action observation could be related to the behavioral motor priming and interference effects produced by action observation. To this end, fourteen healthy participants observed index and little finger movements during a TMS task and a stimulus-response compatibility task. Index muscle displayed sensitivity to action observation, and action observation resulted in significant motor priming+interference, while no significant effect was observed for the little finger in both task. Nevertheless, our results indicate that the sensitivity measured in TMS was not related to the behavioral changes measured in the stimulus-response compatibility task. Contrary to a predominant assumption, the current results indicate that individual differences in physiological and behavioral markers of action observation may be unrelated. This could have important impacts on the potential use of behavioral markers in place of more costly physiological markers of action observation in clinical settings.

Description

Keywords

TMS, action observation, automatic imitation, mirror neurons, motor interference, motor priming, sensitivity, stimulus–response compatibility

Citation