Expansion-free electromagnetic solutions of Kerr-Schild class
dc.contributor | Virginia Tech | en |
dc.contributor.author | Debney, G. | en |
dc.contributor.department | Mathematics | en |
dc.date.accessed | 2014-03-20 | en |
dc.date.accessioned | 2014-04-09T18:12:18Z | en |
dc.date.available | 2014-04-09T18:12:18Z | en |
dc.date.issued | 1974-07 | en |
dc.description.abstract | Starting with the general Kerr_Schild form of the metric tensor,d s2=_+l_l (where l is null and _ is flat space_time), a study is made for those solutions of the Einstein_Maxwell equations in which l is geodesic, shear_free, and expansion_free. It is shown that all resulting solutions must be of Petrov type [4] or type [_] and the Maxwell field must be null. Because of the expansion_free assumption there exist flat and conformally flat gauge conditions on all metrics in this class; i.e., there exist metrics of this Kerr_Schild form which are flat (or conformally flat) but are not Lorentz_related. A method is given for obtaining meaningful solutions to the field equations with the latter gauge equivalence class removed. A simple example of a radiative field of type [4] along a line singularity exhibits how solutions in this class may be generated. | en |
dc.identifier.citation | Debney, G., "Expansion-free electromagnetic solutions of Kerr-Schild class," J. Math. Phys. 15, 992 (1974); http://dx.doi.org/10.1063/1.1666784 | en |
dc.identifier.doi | https://doi.org/10.1063/1.1666784 | en |
dc.identifier.issn | 0022-2488 | en |
dc.identifier.uri | http://hdl.handle.net/10919/47042 | en |
dc.identifier.url | http://scitation.aip.org/content/aip/journal/jmp/15/7/10.1063/1.1666784 | en |
dc.language.iso | en_US | en |
dc.publisher | AIP Publishing | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | maxwell equations | en |
dc.subject | tensor methods | en |
dc.title | Expansion-free electromagnetic solutions of Kerr-Schild class | en |
dc.title.serial | Journal of Mathematical Physics | en |
dc.type | Article - Refereed | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1.1666784.pdf
- Size:
- 615.43 KB
- Format:
- Adobe Portable Document Format
- Description:
- Main article