Spectral properties of the Kronig-Penney Hamiltonian with a localized impurity
dc.contributor | Virginia Tech | en |
dc.contributor.author | Fassari, S. | en |
dc.contributor.department | Mathematics | en |
dc.date.accessed | 2014-03-20 | en |
dc.date.accessioned | 2014-04-09T18:12:27Z | en |
dc.date.available | 2014-04-09T18:12:27Z | en |
dc.date.issued | 1989-06 | en |
dc.description.abstract | It is shown that there exist bound states of the operator H ±λ=−(d 2/d x 2) +∑ m∈Z δ(⋅−(2m+1)π)±λW, W being an L 1(−∞,+∞) non‐negative function, in every sufficiently far gap of the spectrum of H 0=−d 2/d x 2 +∑ m∈Z δ(⋅−(2m+1)π). Such an operator represents the Schrödinger Hamiltonian of a Kronig–Penney‐type crystal with a localized impurity. The analyticity of the greatest (resp. lowest) eigenvalue of H λ (resp. H −λ) occurring in a spectral gap as a function of the coupling constant λ when W is assumed to have an exponential decay is also proven. | en |
dc.description.sponsorship | Department of Energy De-FG05-87ER25033 | en |
dc.description.sponsorship | NSF DMS-8701050 | en |
dc.identifier.citation | Fassari, S., "Spectral properties of the Kronig-Penney Hamiltonian with a localized impurity," J. Math. Phys. 30, 1385 (1989); http://dx.doi.org/10.1063/1.528320 | en |
dc.identifier.doi | https://doi.org/10.1063/1.528320 | en |
dc.identifier.issn | 0022-2488 | en |
dc.identifier.uri | http://hdl.handle.net/10919/47085 | en |
dc.identifier.url | http://scitation.aip.org/content/aip/journal/jmp/30/6/10.1063/1.528320 | en |
dc.language.iso | en_US | en |
dc.publisher | AIP Publishing | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | bound states | en |
dc.subject | eigenvalues | en |
dc.subject | spectral properties | en |
dc.title | Spectral properties of the Kronig-Penney Hamiltonian with a localized impurity | en |
dc.title.serial | Journal of Mathematical Physics | en |
dc.type | Article - Refereed | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1.528320.pdf
- Size:
- 634 KB
- Format:
- Adobe Portable Document Format
- Description:
- Main article