A Homotopy Algorithm for the Combined H-squared/H-to Infinity Model Reduction Problem
dc.contributor.author | Yuzhen, Ge | en |
dc.contributor.author | Collins, Emmanuel G. | en |
dc.contributor.author | Watson, Layne T. | en |
dc.contributor.author | Bernstein, Dennis S. | en |
dc.contributor.department | Computer Science | en |
dc.date.accessioned | 2013-06-19T14:36:02Z | en |
dc.date.available | 2013-06-19T14:36:02Z | en |
dc.date.issued | 1993-05-01 | en |
dc.description.abstract | The problem of finding a reduced order model, optimal in the H-squared sense, to a given system model is a fundamental one in control system analysis and design. The addition of a H-to infinity constraint to the H-squared optimal model reduction problem results in a more practical yet computationally more difficult problem. Without the global convergence of probability-one homotopy methods the combined H-squared/H-to infinity model reduction problem is difficult to solve. Several approaches based on homotoppy methods have been proposed. The issues are the number of degrees of freedom, the well posedness of the finite dimensional optimization problem, and the numerical robustness of the resulting homotopy algorithm. Homotopy algorithms based on two formulations - input normal form; Ly, Bryson, and Cannon's 2 x 2 block parametrization - are developed and compared here. | en |
dc.format.mimetype | application/pdf | en |
dc.identifier | http://eprints.cs.vt.edu/archive/00000357/ | en |
dc.identifier.sourceurl | http://eprints.cs.vt.edu/archive/00000357/01/TR-93-15.pdf | en |
dc.identifier.trnumber | TR-93-15 | en |
dc.identifier.uri | http://hdl.handle.net/10919/19821 | en |
dc.language.iso | en | en |
dc.publisher | Department of Computer Science, Virginia Polytechnic Institute & State University | en |
dc.relation.ispartof | Historical Collection(Till Dec 2001) | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.title | A Homotopy Algorithm for the Combined H-squared/H-to Infinity Model Reduction Problem | en |
dc.type | Technical report | en |
dc.type.dcmitype | Text | en |
Files
Original bundle
1 - 1 of 1