Remote Actuation of Magnetic Nanoparticles For Cancer Cell Selective Treatment Through Cytoskeletal Disruption
dc.contributor.author | Master, Alyssa M. | en |
dc.contributor.author | Williams, Philise N. | en |
dc.contributor.author | Pothayee, Nikorn | en |
dc.contributor.author | Pothayee, Nipon | en |
dc.contributor.author | Zhang, Rui | en |
dc.contributor.author | Vishwasrao, Hemant M. | en |
dc.contributor.author | Golovin, Yuri I. | en |
dc.contributor.author | Riffle, Judy S. | en |
dc.contributor.author | Sokolsky, Marina | en |
dc.contributor.author | Kabanov, Alexander V. | en |
dc.date.accessioned | 2019-01-22T18:54:43Z | en |
dc.date.available | 2019-01-22T18:54:43Z | en |
dc.date.issued | 2016-09-20 | en |
dc.description.abstract | Motion of micron and sub-micron size magnetic particles in alternating magnetic fields can activate mechanosensitive cellular functions or physically destruct cancer cells. However, such effects are usually observed with relatively large magnetic particles (> 250 nm) that would be difficult if at all possible to deliver to remote sites in the body to treat disease. Here we show a completely new mechanism of selective toxicity of superparamagnetic nanoparticles (SMNP) of 7 to 8 nm in diameter to cancer cells. These particles are coated by block copolymers, which facilitates their entry into the cells and clustering in the lysosomes, where they are then magneto-mechanically actuated by remotely applied alternating current (AC) magnetic fields of very low frequency (50 Hz). Such fields and treatments are safe for surrounding tissues but produce cytoskeletal disruption and subsequent death of cancer cells while leaving healthy cells intact. | en |
dc.description.notes | The Carolina Partnership, a strategic partnership between the UNC Eshelman School of Pharmacy, The University Cancer Research Fund through the Lineberger 32 Comprehensive Cancer Center and the grant from the UNC Eshelman Institute for Innovation, in part supported this work. | en |
dc.description.sponsorship | UNC Eshelman Institute for Innovation | en |
dc.format.extent | 13 | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1038/srep33560 | en |
dc.identifier.issn | 2045-2322 | en |
dc.identifier.other | 33560 | en |
dc.identifier.pmid | 27644858 | en |
dc.identifier.uri | http://hdl.handle.net/10919/86835 | en |
dc.identifier.volume | 6 | en |
dc.language.iso | en_US | en |
dc.publisher | Springer Nature | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | lysosomal membrane permeabilization | en |
dc.subject | oxide nanoparticles | en |
dc.subject | hyperthermia | en |
dc.subject | Apoptosis | en |
dc.subject | fields | en |
dc.subject | therapy | en |
dc.subject | death | en |
dc.subject | time | en |
dc.title | Remote Actuation of Magnetic Nanoparticles For Cancer Cell Selective Treatment Through Cytoskeletal Disruption | en |
dc.title.serial | Scientific Reports | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
Files
Original bundle
1 - 1 of 1