Monitoring and flaw detection during wire-based directed energy deposition using in-situ acoustic sensing and wavelet graph signal analysis
Files
TR Number
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The goal of this work is to detect flaw formation in the wire-based directed energy deposition (W-DED) process using in-situ sensor data. The W-DED studied in this work is analogous to metal inert gas electric arc welding. The adoption of W-DED in industry is limited because the process is susceptible to stochastic and environmental disturbances that cause instabilities in the electric arc, eventually leading to flaw for-mation, such as porosity and suboptimal geometric integrity. Moreover, due to the large size of W-DED parts, it is difficult to detect flaws post-process using non-destructive techniques, such as X-ray com-puted tomography. Accordingly, the objective of this work is to detect flaw formation in W-DED parts using data acquired from an acoustic (sound) sensor installed near the electric arc. To realize this objec-tive, we develop and apply a novel wavelet integrated graph theory approach. The approach extracts a single feature called graph Laplacian Fiedler number from the noise-contaminated acoustic sensor data, which is subsequently tracked in a statistical control chart. Using this approach, the onset of various types of flaws are detected with a false alarm rate less-than 2%. This work demonstrates the potential of using advanced data analytics for in-situ monitoring of W-DED.(c) 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).