Monitoring and flaw detection during wire-based directed energy deposition using in-situ acoustic sensing and wavelet graph signal analysis


The goal of this work is to detect flaw formation in the wire-based directed energy deposition (W-DED) process using in-situ sensor data. The W-DED studied in this work is analogous to metal inert gas electric arc welding. The adoption of W-DED in industry is limited because the process is susceptible to stochastic and environmental disturbances that cause instabilities in the electric arc, eventually leading to flaw for-mation, such as porosity and suboptimal geometric integrity. Moreover, due to the large size of W-DED parts, it is difficult to detect flaws post-process using non-destructive techniques, such as X-ray com-puted tomography. Accordingly, the objective of this work is to detect flaw formation in W-DED parts using data acquired from an acoustic (sound) sensor installed near the electric arc. To realize this objec-tive, we develop and apply a novel wavelet integrated graph theory approach. The approach extracts a single feature called graph Laplacian Fiedler number from the noise-contaminated acoustic sensor data, which is subsequently tracked in a statistical control chart. Using this approach, the onset of various types of flaws are detected with a false alarm rate less-than 2%. This work demonstrates the potential of using advanced data analytics for in-situ monitoring of W-DED.(c) 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://



Wire-based directed energy deposition, Process flaw monitoring, Acoustic sensor, Wavelet filtering, Graph theory