Why do soliton equations come in hierarchies?

dc.contributorVirginia Techen
dc.contributor.authorYordanov, R. G.en
dc.contributor.departmentMathematicsen
dc.date.accessed2014-03-20en
dc.date.accessioned2014-04-09T18:12:30Zen
dc.date.available2014-04-09T18:12:30Zen
dc.date.issued1993-09en
dc.description.abstractIn this article, an identity satisfied by the so-called recursion operator is derived. The identity generates by itself an infinite sequence of Lax pairs, thus ensuring the complete integrability of the corresponding hierarchy of nonlinear evolution equations. It is also shown that this identity yields the familiar property that the squares of eigenfunctions of the associated linear spectral problem satisfy the linearized version of the respective soliton equation.en
dc.identifier.citationYordanov, R. G., "Why do soliton equations come in hierarchies?," J. Math. Phys. 34, 4045 (1993); http://dx.doi.org/10.1063/1.530024en
dc.identifier.doihttps://doi.org/10.1063/1.530024en
dc.identifier.issn0022-2488en
dc.identifier.urihttp://hdl.handle.net/10919/47100en
dc.identifier.urlhttp://scitation.aip.org/content/aip/journal/jmp/34/9/10.1063/1.530024en
dc.language.isoen_USen
dc.publisherAIP Publishingen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectpotentialsen
dc.subjectenergyen
dc.titleWhy do soliton equations come in hierarchies?en
dc.title.serialJournal of Mathematical Physicsen
dc.typeArticle - Refereeden

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1.530024.pdf
Size:
488.58 KB
Format:
Adobe Portable Document Format
Description:
Main article