Preconditioners for generalized saddle-point problems
dc.contributor | Virginia Tech | en |
dc.contributor.author | Siefert, Chris | en |
dc.contributor.author | de Sturler, Eric | en |
dc.contributor.department | Mathematics | en |
dc.date.accessed | 2014-05-27 | en |
dc.date.accessioned | 2014-05-28T18:35:07Z | en |
dc.date.available | 2014-05-28T18:35:07Z | en |
dc.date.issued | 2006 | en |
dc.description.abstract | We propose and examine block-diagonal preconditioners and variants of indefinite preconditioners for block two-by-two generalized saddle-point problems. That is, we consider the nonsymmetric, nonsingular case where the ( 2,2) block is small in norm, and we are particularly concerned with the case where the ( 1,2) block is different from the transposed ( 2,1) block. We provide theoretical and experimental analyses of the convergence and eigenvalue distributions of the preconditioned matrices. We also extend the results of [ de Sturler and Liesen, SIAM J. Sci. Comput., 26 ( 2005), pp. 1598 - 1619] to matrices with nonzero ( 2,2) block and to the use of approximate Schur complements. To demonstrate the effectiveness of these preconditioners we show convergence results, spectra, and eigenvalue bounds for two model Navier - Stokes problems. | en |
dc.description.sponsorship | U.S. Department of Energy under grant DOE LLNL B341494 through the Center for the Simulation of Advanced Rockets | en |
dc.identifier.citation | Siefert, C.; De Sturler, E., "Preconditioners for generalized saddle-point problems," SIAM J. Numer. Anal., 44(3), 1275-1296, (2006). DOI: 10.1137/040610908 | en |
dc.identifier.doi | https://doi.org/10.1137/040610908 | en |
dc.identifier.issn | 0036-1429 | en |
dc.identifier.uri | http://hdl.handle.net/10919/48151 | en |
dc.identifier.url | http://epubs.siam.org/doi/abs/10.1137/040610908 | en |
dc.language.iso | en_US | en |
dc.publisher | Siam Publications | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | point problems | en |
dc.subject | generalized saddle-point problems | en |
dc.subject | iterative methods | en |
dc.subject | preconditioning | en |
dc.subject | Krylov subspace methods | en |
dc.subject | eigenvalue bounds | en |
dc.subject | indefinite linear-systems | en |
dc.subject | Navier-Stokes equations | en |
dc.subject | fast iterative | en |
dc.subject | solution | en |
dc.subject | block preconditioners | en |
dc.subject | approximation | en |
dc.subject | Optimization | en |
dc.subject | inexact | en |
dc.subject | part | en |
dc.subject | mathematics, applied | en |
dc.title | Preconditioners for generalized saddle-point problems | en |
dc.title.serial | Siam Journal on Numerical Analysis | en |
dc.type | Article - Refereed | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 040610908.pdf
- Size:
- 269.93 KB
- Format:
- Adobe Portable Document Format
- Description:
- Main article