VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Assessing Urban Landscape Variables’ Contributions to Microclimates

Files

TR Number

Date

2015-12-24

Journal Title

Journal ISSN

Volume Title

Publisher

Hindawi

Abstract

The well-known urban heat island (UHI) effect recognizes prevailing patterns of warmer urban temperatures relative to surrounding rural landscapes. Although UHIs are often visualized as single features, internal variations within urban landscapes create distinctive microclimates. Evaluating intraurban microclimate variability presents an opportunity to assess spatial dimensions of urban environments and identify locations that heat or cool faster than other locales. Our study employs mobile weather units and fixed weather stations to collect air temperatures across Roanoke, Virginia, USA, on selected dates over a two-year interval. Using this temperature data, together with six landscape variables, we interpolated (using Kriging and Random Forest) air temperatures across the city for each collection period. Our results estimated temperatures with small mean square errors (ranging from 0.03 to 0.14); landscape metrics explained between 60 and 91% of temperature variations (higher when the previous day’s average temperatures were included as a variable). For all days, similar spatial patterns appeared for cooler and warmer areas in mornings, with distinctive patterns as landscapes warmed during the day and over successive days. Our results revealed that the most potent landscape variables vary according to season and time of day. Our analysis contributes new dimensions and new levels of spatial and temporal detail to urban microclimate research.

Description

Keywords

Citation

Tammy E. Parece, Jie Li, James B. Campbell, and David Carroll, “Assessing Urban Landscape Variables’ Contributions to Microclimates,” Advances in Meteorology, vol. 2016, Article ID 8736263, 14 pages, 2016. doi:10.1155/2016/8736263