VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Understand the Dynamic World: An End-to-End Knowledge Informed Framework for Open Domain Entity State Tracking

dc.contributor.authorLi, Mingchenen
dc.contributor.authorHuang, Lifuen
dc.date.accessioned2023-08-02T17:45:33Zen
dc.date.available2023-08-02T17:45:33Zen
dc.date.issued2023-07-19en
dc.date.updated2023-08-01T07:57:43Zen
dc.description.abstractOpen domain entity state tracking aims to predict reasonable state changes of entities (i.e., [attribute] of [entity] was [before_state] and [after_state] afterwards) given the action descriptions. It’s important to many reasoning tasks to support human everyday activities. However, it’s challenging as the model needs to predict an arbitrary number of entity state changes caused by the action while most of the entities are implicitly relevant to the actions and their attributes as well as states are from open vocabularies. To tackle these challenges, we propose a novel end-to-end Knowledge Informed framework for open domain Entity State Tracking, namely Kiest, which explicitly retrieves the relevant entities and attributes from external knowledge graph (i.e., ConceptNet) and incorporates them to autoregressively generate all the entity state changes with a novel dynamic knowledge grained encoder-decoder framework. To enforce the logical coherence among the predicted entities, attributes, and states, we design a new constraint decoding strategy and employ a coherence reward to improve the decoding process. Experimental results show that our proposed Kiest framework significantly outperforms the strong baselines on the public benchmark dataset – OpenPI.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1145/3539618.3591781en
dc.identifier.urihttp://hdl.handle.net/10919/115958en
dc.language.isoenen
dc.publisherACMen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.holderThe author(s)en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.titleUnderstand the Dynamic World: An End-to-End Knowledge Informed Framework for Open Domain Entity State Trackingen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
3539618.3591781.pdf
Size:
1.7 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: