Growth of functions in cercles de remplissage
| dc.contributor | Virginia Tech | en | 
| dc.contributor.author | Fenton, P. C. | en | 
| dc.contributor.author | Rossi, John F. | en | 
| dc.contributor.department | Mathematics | en | 
| dc.date.accessed | 2014-07-15 | en | 
| dc.date.accessioned | 2014-07-21T15:49:40Z | en | 
| dc.date.available | 2014-07-21T15:49:40Z | en | 
| dc.date.issued | 2002-02 | en | 
| dc.description.abstract | Suppose that f is meromorphic in the plane, and that there is a sequence z(n) --> infinity and a sequence of positive numbers epsilon(n) --> 0, such that epsilon(n)\z(n)f(#)(z(n))/log\z(n)\ --> infinity. It is shown that if f is analytic and non-zero in the closed discs Delta(n) = {z : \z - z(n)\ less than or equal to epsilon(n)\z(n)\}, n = 1, 2, 3,..., then, given any positive integer K, there are arbitrarily large values of n and there is a point z in Delta(n) such that \f(z)\ > \z\(K). Examples are given to show that the hypotheses cannot be relaxed. | en | 
| dc.identifier.citation | Fenton, P. C.; Rossi, J., "Growth of functions in cercles de remplissage," J. Austral. Math. Soc. 72 (2002), 131-136. DOI: 10.1017/S1446788700003645 | en | 
| dc.identifier.doi | https://doi.org/10.1017/S1446788700003645 | en | 
| dc.identifier.issn | 1446-7887 | en | 
| dc.identifier.uri | http://hdl.handle.net/10919/49641 | en | 
| dc.identifier.url | http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=4831012&fulltextType=RA&fileId=S1446788700003645 | en | 
| dc.language.iso | en_US | en | 
| dc.publisher | Cambridge University Press | en | 
| dc.rights | In Copyright | en | 
| dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en | 
| dc.subject | mathematics | en | 
| dc.title | Growth of functions in cercles de remplissage | en | 
| dc.title.serial | Journal of the Australian Mathematical Society | en | 
| dc.type | Article - Refereed | en | 
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
 - S1446788700003645a.pdf
 - Size:
 - 193.71 KB
 - Format:
 - Adobe Portable Document Format
 - Description:
 - Main article