VTechWorks staff will be away for the Thanksgiving holiday from Wednesday November 26 through Sunday November 30. We will respond to emails on Monday December 1.
 

Growth of functions in cercles de remplissage

dc.contributorVirginia Techen
dc.contributor.authorFenton, P. C.en
dc.contributor.authorRossi, John F.en
dc.contributor.departmentMathematicsen
dc.date.accessed2014-07-15en
dc.date.accessioned2014-07-21T15:49:40Zen
dc.date.available2014-07-21T15:49:40Zen
dc.date.issued2002-02en
dc.description.abstractSuppose that f is meromorphic in the plane, and that there is a sequence z(n) --> infinity and a sequence of positive numbers epsilon(n) --> 0, such that epsilon(n)\z(n)f(#)(z(n))/log\z(n)\ --> infinity. It is shown that if f is analytic and non-zero in the closed discs Delta(n) = {z : \z - z(n)\ less than or equal to epsilon(n)\z(n)\}, n = 1, 2, 3,..., then, given any positive integer K, there are arbitrarily large values of n and there is a point z in Delta(n) such that \f(z)\ > \z\(K). Examples are given to show that the hypotheses cannot be relaxed.en
dc.identifier.citationFenton, P. C.; Rossi, J., "Growth of functions in cercles de remplissage," J. Austral. Math. Soc. 72 (2002), 131-136. DOI: 10.1017/S1446788700003645en
dc.identifier.doihttps://doi.org/10.1017/S1446788700003645en
dc.identifier.issn1446-7887en
dc.identifier.urihttp://hdl.handle.net/10919/49641en
dc.identifier.urlhttp://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=4831012&fulltextType=RA&fileId=S1446788700003645en
dc.language.isoen_USen
dc.publisherCambridge University Pressen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectmathematicsen
dc.titleGrowth of functions in cercles de remplissageen
dc.title.serialJournal of the Australian Mathematical Societyen
dc.typeArticle - Refereeden

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
S1446788700003645a.pdf
Size:
193.71 KB
Format:
Adobe Portable Document Format
Description:
Main article