Multirate timestepping methods for hyperbolic conservation laws

dc.contributor.authorConstantinescu, Emil M.en
dc.contributor.authorSandu, Adrianen
dc.contributor.departmentComputer Scienceen
dc.date.accessioned2013-06-19T14:36:27Zen
dc.date.available2013-06-19T14:36:27Zen
dc.date.issued2006en
dc.description.abstractThis paper constructs multirate time discretizations for hyperbolic conservation laws that allow different time-steps to be used in different parts of the spatial domain. The discretization is second order accurate in time and preserves the conservation and stability properties under local CFL conditions. Multirate timestepping avoids the necessity to take small global time-steps (restricted by the largest value of the Courant number on the grid) and therefore results in more efficient algorithms.en
dc.format.mimetypeapplication/pdfen
dc.identifierhttp://eprints.cs.vt.edu/archive/00000913/en
dc.identifier.sourceurlhttp://eprints.cs.vt.edu/archive/00000913/01/mrk.pdfen
dc.identifier.trnumberTR-06-15en
dc.identifier.urihttp://hdl.handle.net/10919/19488en
dc.language.isoenen
dc.publisherDepartment of Computer Science, Virginia Polytechnic Institute & State Universityen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectNumerical analysisen
dc.titleMultirate timestepping methods for hyperbolic conservation lawsen
dc.typeTechnical reporten
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mrk.pdf
Size:
364.99 KB
Format:
Adobe Portable Document Format