VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Seasonal Variations of Soil Thermal Conductivity at the InSight Landing Site

TR Number

Date

2023-04

Journal Title

Journal ISSN

Volume Title

Publisher

American Geophysical Union

Abstract

The heat flow and physical properties package measured soil thermal conductivity at the landing site in the 0.03-0.37 m depth range. Six measurements spanning solar longitudes from 8.0 degrees to 210.0 degrees were made and atmospheric pressure at the site was simultaneously measured using InSight's Pressure Sensor. We find that soil thermal conductivity strongly correlates with atmospheric pressure. This trend is compatible with predictions of the pressure dependence of thermal conductivity for unconsolidated soils under martian atmospheric conditions, indicating that heat transport through the pore filling gas is a major contributor to the total heat transport. Therefore, any cementation or induration of the soil sampled by the experiments must be minimal and soil surrounding the mole at depths below the duricrust is likely unconsolidated. Thermal conductivity data presented here are the first direct evidence that the atmosphere interacts with the top most meter of material on Mars.

Description

Keywords

InSight, HP3, thermal conductivity, soil, heat transport

Citation