HOMPACK: A Suite of Codes for Globally Convergent Homotopy Algorithms

dc.contributor.authorWatson, Layne T.en
dc.contributor.authorBillups, Stephen C.en
dc.contributor.authorMorgan, Alexander P.en
dc.contributor.departmentComputer Scienceen
dc.date.accessioned2013-06-19T14:37:13Zen
dc.date.available2013-06-19T14:37:13Zen
dc.date.issued1990en
dc.description.abstractThere are algorithms for finding zeros or fixed points of nonlinear systems of equations that are globally convergent for almost all starting points, i.e., with probability one. The essence of all such algorithms is the construction of an appropriate homotoppy map and then tracking some smooth curve in the zero set of this homotopy map. HOMPACK provides three qualitatively different algorithms for tracking the homotopy zero curve: ordinary differential equation based, normal flow, and augmented Jacobian matrix. Separate routines are also provided for dense and sparse Jacobian matrices. A high level driver is included for the special case of polynomial systems.en
dc.format.mimetypeapplication/pdfen
dc.identifierhttp://eprints.cs.vt.edu/archive/00000218/en
dc.identifier.sourceurlhttp://eprints.cs.vt.edu/archive/00000218/01/TR-90-36.pdfen
dc.identifier.trnumberTR-90-36en
dc.identifier.urihttp://hdl.handle.net/10919/19612en
dc.language.isoenen
dc.publisherDepartment of Computer Science, Virginia Polytechnic Institute & State Universityen
dc.relation.ispartofHistorical Collection(Till Dec 2001)en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.titleHOMPACK: A Suite of Codes for Globally Convergent Homotopy Algorithmsen
dc.typeTechnical reporten
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR-90-36.pdf
Size:
1.52 MB
Format:
Adobe Portable Document Format