VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Continental-scale decrease in net primary productivity in streams due to climate warming

dc.contributor.authorSong, Chaoen
dc.contributor.authorDodds, Walter K.en
dc.contributor.authorRuegg, Janineen
dc.contributor.authorArgerich, Albaen
dc.contributor.authorBaker, Christina L.en
dc.contributor.authorBowden, William B.en
dc.contributor.authorDouglas, Michael M.en
dc.contributor.authorFarrell, Kaitlin J.en
dc.contributor.authorFlinn, Michael B.en
dc.contributor.authorGarcia, Erica A.en
dc.contributor.authorHelton, Ashley M.en
dc.contributor.authorHarms, Tamara K.en
dc.contributor.authorJia, Shufangen
dc.contributor.authorJones, Jeremy B.en
dc.contributor.authorKoenig, Lauren E.en
dc.contributor.authorKominoski, John S.en
dc.contributor.authorMcDowell, William H.en
dc.contributor.authorMcMaster, Damienen
dc.contributor.authorParker, Samuel P.en
dc.contributor.authorRosemond, Amy D.en
dc.contributor.authorRuffing, Claire M.en
dc.contributor.authorSheehan, Ken R.en
dc.contributor.authorTrentman, Matt T.en
dc.contributor.authorWhiles, Matt R.en
dc.contributor.authorWollheim, Wilfred M.en
dc.contributor.authorBallantyne, Forden
dc.contributor.departmentBiological Sciencesen
dc.date.accessioned2020-07-10T12:37:36Zen
dc.date.available2020-07-10T12:37:36Zen
dc.date.issued2018-06en
dc.description.abstractStreams play a key role in the global carbon cycle. The balance between carbon intake through photosynthesis and carbon release via respiration influences carbon emissions from streams and depends on temperature. However, the lack of a comprehensive analysis of the temperature sensitivity of the metabolic balance in inland waters across latitudes and local climate conditions hinders an accurate projection of carbon emissions in a warmer future. Here, we use a model of diel dissolved oxygen dynamics, combined with high-frequency measurements of dissolved oxygen, light and temperature, to estimate the temperature sensitivities of gross primary production and ecosystem respiration in streams across six biomes, from the tropics to the arctic tundra. We find that the change in metabolic balance, that is, the ratio of gross primary production to ecosystem respiration, is a function of stream temperature and current metabolic balance. Applying this relationship to the global compilation of stream metabolism data, we find that a 1 degrees C increase in stream temperature leads to a convergence of metabolic balance and to a 23.6% overall decline in net ecosystem productivity across the streams studied. We suggest that if the relationship holds for similarly sized streams around the globe, the warming-induced shifts in metabolic balance will result in an increase of 0.0194 Pg carbon emitted from such streams every year.en
dc.description.adminPublic domain – authored by a U.S. government employeeen
dc.description.notesThe authors thank K. Gido for his contribution in obtaining funding and designing the field experiments. K. Gido, J. Drake, C. Osenberg and J. Minucci provided comments on earlier versions of this paper. Georgia Advanced Computing Resource Center provided the computing facility. This study was supported by the National Science Foundation (NSF, grant EF-1258994) and is part of the Scale, Consumers and Lotic Ecosystem Rates project supported by NSF grant EF-1065255. Data collection at each site was supported by NSF grants EF-1065286, EF-1065055, EF-1065682, EF-1065267, EF-1064998 and EF-1065377, and the Northern Australian Environmental Resources Hub of the National Environmental Science Program.en
dc.description.sponsorshipNational Science Foundation (NSF)National Science Foundation (NSF) [EF-1258994]; NSFNational Science Foundation (NSF) [EF-1065255, EF-1065286, EF-1065055, EF-1065682, EF-1065267, EF-1064998, EF-1065377]; Northern Australian Environmental Resources Hub of the National Environmental Science Program; Scale, Consumers and Lotic Ecosystem Rates projecten
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1038/s41561-018-0125-5en
dc.identifier.eissn1752-0908en
dc.identifier.issn1752-0894en
dc.identifier.issue6en
dc.identifier.urihttp://hdl.handle.net/10919/99323en
dc.identifier.volume11en
dc.language.isoenen
dc.rightsCreative Commons CC0 1.0 Universal Public Domain Dedicationen
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/en
dc.titleContinental-scale decrease in net primary productivity in streams due to climate warmingen
dc.title.serialNature Geoscienceen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.dcmitypeStillImageen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41561-018-0125-5.pdf
Size:
2.27 MB
Format:
Adobe Portable Document Format
Description: