Giant piezoelectric voltage coefficient in grain-oriented modified PbTiO3 material
dc.contributor.author | Yan, Yongke | en |
dc.contributor.author | Zhou, Jie E. | en |
dc.contributor.author | Maurya, Deepam | en |
dc.contributor.author | Wang, Yu U. | en |
dc.contributor.author | Priya, Shashank | en |
dc.date.accessioned | 2019-02-08T14:44:19Z | en |
dc.date.available | 2019-02-08T14:44:19Z | en |
dc.date.issued | 2016-10-11 | en |
dc.description.abstract | A rapid surge in the research on piezoelectric sensors is occurring with the arrival of the Internet of Things. Single-phase oxide piezoelectric materials with giant piezoelectric voltage coefficient (g, induced voltage under applied stress) and high Curie temperature (T-c) are crucial towards providing desired performance for sensing, especially under harsh environmental conditions. Here, we report a grain-oriented (with 95% <001> texture) modified PbTiO3 ceramic that has a high T-c (364 degrees C) and an extremely large g(33) (115 x 10(-3) Vm N-1) in comparison with other known single-phase oxide materials. Our results reveal that self-polarization due to grain orientation along the spontaneous polarization direction plays an important role in achieving large piezoelectric response in a domain motion-confined material. The phase field simulations confirm that the large piezoelectric voltage coefficient g(33) originates from maximized piezoelectric strain coefficient d(33) and minimized dielectric permittivity epsilon(33) in [001]-textured PbTiO3 ceramics where domain wall motions are absent. | en |
dc.description.notes | We gratefully acknowledge the financial supports from AFOSR (S.P., FA9550-14-1-0376), AFOSR STTR program (Y.Y.), National Science Foundation (D.M., PHY-1242637), and DOE (J.Z. and Y.W., DE-FG02-09ER46674). The parallel computer simulations were performed on XSEDE supercomputers. The authors would like to thank the Center for Energy Harvesting Materials and Systems for providing access to industrial experts and equipment. | en |
dc.description.sponsorship | AFOSR [FA9550-14-1-0376] | en |
dc.description.sponsorship | AFOSR STTR program | en |
dc.description.sponsorship | National Science Foundation [PHY-1242637] | en |
dc.description.sponsorship | DOE [DE-FG02-09ER46674] | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1038/ncomms13089 | en |
dc.identifier.issn | 2041-1723 | en |
dc.identifier.other | 13089 | en |
dc.identifier.pmid | 27725634 | en |
dc.identifier.uri | http://hdl.handle.net/10919/87538 | en |
dc.identifier.volume | 7 | en |
dc.language.iso | en_US | en |
dc.publisher | Springer Nature | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.title | Giant piezoelectric voltage coefficient in grain-oriented modified PbTiO3 material | en |
dc.title.serial | Nature Communications | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- ncomms13089.pdf
- Size:
- 3.25 MB
- Format:
- Adobe Portable Document Format
- Description: