High-performance carbon nanotube coatings for high-power laser radiometry

dc.contributorVirginia Tech. Institute for Critical Technology and Applied Science (ICTAS)en
dc.contributorVirginia Tech. Engineering Science and Mechanics Departmenten
dc.contributorVirginia Tech. Department of Mechanical Engineeringen
dc.contributorUniversity of Colorado, Boulder. Department of Mechanical Engineeringen
dc.contributorNational Institute of Standards and Technology (U.S.)en
dc.contributorJames Madison Universityen
dc.contributorNational Renewable Energy Laboratory (U.S.)en
dc.contributor.authorRamadurai, Krishnaen
dc.contributor.authorCromer, Christopher L.en
dc.contributor.authorLewis, Laurence A.en
dc.contributor.authorHurst, Katherine E.en
dc.contributor.authorDillon, Anne C.en
dc.contributor.authorMahajan, Roop L.en
dc.contributor.authorLehman, John H.en
dc.date.accessed2015-04-24en
dc.date.accessioned2015-05-05T18:16:00Zen
dc.date.available2015-05-05T18:16:00Zen
dc.date.issued2008-01-01en
dc.description.abstractRadiometry for the next generation of high-efficiency, high-power industrial lasers requires thermal management at optical power levels exceeding 10 kW. Laser damage and thermal transport present fundamental challenges for laser radiometry in support of common manufacturing processes, such as welding, cutting, ablation, or vaporization. To address this growing need for radiometry at extremely high power densities, we demonstrate multiwalled carbon nanotube (MWCNT) coatings with damage thresholds exceeding 15 000 W/cm(2) and absorption efficiencies over 90% at 1.06 mu m. This result demonstrates specific design advantages not possible with other contemporary high-power laser coatings. Furthermore, the results demonstrate a performance difference between MWCNTs and single-walled carbon nanotube coatings, which is attributed to the lower net thermal resistance of the MWCNT coatings. We explore the behavior of carbon nanotubes at two laser wavelengths (1.06 and 10.6 mu m) and also evaluate the optical-absorption efficiency and bulk properties of the coatings. (c) 2008 American Institute of Physics.en
dc.description.sponsorshipCU-NIST seed grant programen
dc.format.extent7 pagesen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationJournal of Applied Physics 103, 013103 (2008); doi: 10.1063/1.2825647en
dc.identifier.doihttps://doi.org/10.1063/1.2825647en
dc.identifier.issn0021-8979en
dc.identifier.urihttp://hdl.handle.net/10919/52016en
dc.identifier.urlhttp://scitation.aip.org/content/aip/journal/jap/103/1/10.1063/1.2825647en
dc.language.isoen_USen
dc.publisherAmerican Institute of Physicsen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectCarbon nanotubesen
dc.subjectCarbonen
dc.subjectIrradianceen
dc.subjectMetallic coatingsen
dc.subjectOptical coatingsen
dc.titleHigh-performance carbon nanotube coatings for high-power laser radiometryen
dc.title.serialJournal of Applied Physicsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2008_High_performance_carbon_nanotube.pdf
Size:
799.9 KB
Format:
Adobe Portable Document Format
Description: