Cauchy-problem for the linearized version of the Generalized Polynomial KdV equation

dc.contributorVirginia Techen
dc.contributor.authorYordanov, R. G.en
dc.contributor.departmentMathematicsen
dc.date.accessed2014-03-20en
dc.date.accessioned2014-04-09T18:12:16Zen
dc.date.available2014-04-09T18:12:16Zen
dc.date.issued1992-06en
dc.description.abstractIn the present paper results about the "Generalized Polynomial Korteweg-de Vries equation" (GPKdV) are obtained, extending the ones by Sachs [SIAM J. Math. Anal. 14, 674 (1983)] for the Korteweg-de Vries (KdV) equation. Namely, the evolution of the so-called "prolonged squared" eigenfunctions of the associated spectral problem according to the linearized GPKdV is proven, the Lax pairs associated with the "prolonged" eigenfunctions as well as "prolonged squared" eigenfunctions are derived, and on the basis of some expansion formulas the Cauchy problem for the linearized GPKdV with a decreasing at infinity initial condition is solved.en
dc.identifier.citationYordanov, R. G., "Cauchy-problem for the linearized version of the Generalized Polynomial KdV equation," J. Math. Phys. 33, 2013 (1992); http://dx.doi.org/10.1063/1.529624en
dc.identifier.doihttps://doi.org/10.1063/1.529624en
dc.identifier.issn0022-2488en
dc.identifier.urihttp://hdl.handle.net/10919/47030en
dc.identifier.urlhttp://scitation.aip.org/content/aip/journal/jmp/33/6/10.1063/1.529624en
dc.language.isoen_USen
dc.publisherAIP Publishingen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectschrodingeren
dc.titleCauchy-problem for the linearized version of the Generalized Polynomial KdV equationen
dc.title.serialJournal of Mathematical Physicsen
dc.typeArticle - Refereeden

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1.529624.pdf
Size:
793.09 KB
Format:
Adobe Portable Document Format
Description:
Main article