Stochastic wave-kinetic theory in the Liouville approximation
dc.contributor | Virginia Tech | en |
dc.contributor.author | Besieris, Ioannis M. | en |
dc.contributor.author | Tappert, F. D. | en |
dc.contributor.department | Electrical and Computer Engineering | en |
dc.date.accessed | 2014-03-20 | en |
dc.date.accessioned | 2014-04-09T18:12:27Z | en |
dc.date.available | 2014-04-09T18:12:27Z | en |
dc.date.issued | 1976-05-01 | en |
dc.description.abstract | The behavior of scalar wave propagation in a wide class of asymptotically conservative, dispersive, weakly inhomogeneous and weakly nonstationary, anisotropic,random media is investigated on the basis of a stochastic, collisionless, Liouville_type equation governing the temporal evolution of a phase_space Wigner distribution density function. Within the framework of the first_order smoothing approximation, a general diffusion-convolution_type kinetic or transport equation is derived for the mean phase_space distribution function containing generalized (nonloral, with memory) diffusion,friction, and absorption operators in phase space. Various levels of simplification are achieved by introducing additional constraints. In the long_time, Markovian, diffusion approximation, a general set of Fokker-Planck equations is derived. Finally, special cases of these equations are examined for spatially homogeneous systems and isotropic media. | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Besieris, I. M.; Tappert, F. D., "Stochastic wave-kinetic theory in the Liouville approximation," J. Math. Phys. 17, 734 (1976); http://dx.doi.org/10.1063/1.522971 | en |
dc.identifier.doi | https://doi.org/10.1063/1.522971 | en |
dc.identifier.issn | 0022-2488 | en |
dc.identifier.uri | http://hdl.handle.net/10919/47088 | en |
dc.identifier.url | http://scitation.aip.org/content/aip/journal/jmp/17/5/10.1063/1.522971 | en |
dc.language.iso | en | en |
dc.publisher | AIP Publishing | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | Diffusion | en |
dc.subject | Anisotropy | en |
dc.subject | Collision theories | en |
dc.subject | Cumulative distribution functions | en |
dc.subject | Density functional theory | en |
dc.subject | Friction | en |
dc.subject | Operator equations | en |
dc.subject | Random media | en |
dc.subject | Wave propagation | en |
dc.title | Stochastic wave-kinetic theory in the Liouville approximation | en |
dc.title.serial | Journal of Mathematical Physics | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1.522971.pdf
- Size:
- 841.44 KB
- Format:
- Adobe Portable Document Format
- Description:
- Main article