VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Stochastic wave-kinetic theory in the Liouville approximation

dc.contributorVirginia Techen
dc.contributor.authorBesieris, Ioannis M.en
dc.contributor.authorTappert, F. D.en
dc.contributor.departmentElectrical and Computer Engineeringen
dc.date.accessed2014-03-20en
dc.date.accessioned2014-04-09T18:12:27Zen
dc.date.available2014-04-09T18:12:27Zen
dc.date.issued1976-05-01en
dc.description.abstractThe behavior of scalar wave propagation in a wide class of asymptotically conservative, dispersive, weakly inhomogeneous and weakly nonstationary, anisotropic,random media is investigated on the basis of a stochastic, collisionless, Liouville_type equation governing the temporal evolution of a phase_space Wigner distribution density function. Within the framework of the first_order smoothing approximation, a general diffusion-convolution_type kinetic or transport equation is derived for the mean phase_space distribution function containing generalized (nonloral, with memory) diffusion,friction, and absorption operators in phase space. Various levels of simplification are achieved by introducing additional constraints. In the long_time, Markovian, diffusion approximation, a general set of Fokker-Planck equations is derived. Finally, special cases of these equations are examined for spatially homogeneous systems and isotropic media.en
dc.format.mimetypeapplication/pdfen
dc.identifier.citationBesieris, I. M.; Tappert, F. D., "Stochastic wave-kinetic theory in the Liouville approximation," J. Math. Phys. 17, 734 (1976); http://dx.doi.org/10.1063/1.522971en
dc.identifier.doihttps://doi.org/10.1063/1.522971en
dc.identifier.issn0022-2488en
dc.identifier.urihttp://hdl.handle.net/10919/47088en
dc.identifier.urlhttp://scitation.aip.org/content/aip/journal/jmp/17/5/10.1063/1.522971en
dc.language.isoenen
dc.publisherAIP Publishingen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectDiffusionen
dc.subjectAnisotropyen
dc.subjectCollision theoriesen
dc.subjectCumulative distribution functionsen
dc.subjectDensity functional theoryen
dc.subjectFrictionen
dc.subjectOperator equationsen
dc.subjectRandom mediaen
dc.subjectWave propagationen
dc.titleStochastic wave-kinetic theory in the Liouville approximationen
dc.title.serialJournal of Mathematical Physicsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1.522971.pdf
Size:
841.44 KB
Format:
Adobe Portable Document Format
Description:
Main article