Crowds for Clouds: Using an Internet Workforce to Interpret Satellite Images


A chronologically ordered sequence of satellite images can be used to learn how natural features of the landscape change over time. For example, we can learn how forests react to human interventions or climate change. Before these satellite images can be used for this purpose, they need to be examined for clouds and cloud shadow that may hide important features of the landscape and would lead to misinterpretation of forest conditions. Once clouds and their shadow have been identified, researchers can then look for other images that include the feature of interest, taken a bit earlier or later in time, to fill in the "missing information" for the original image. Therefore, the task of identifying clouds and their shadow is extremely important for the correct and efficient use of each image. Computer algorithms are only imperfectly suited for this task. The aim of this project is to outsource the cloud interpretation task to a global internet community of "turkers" -workers recruited via's online job market known as "Mechanical Turk."



Satellite imagery, Mechanical turk, Cloud interpretation