Turing-pattern model of scaffolding proteins that establish spatial asymmetry during the cell cycle of Caulobacter crescentus
dc.contributor.author | Xu, Chunrui | en |
dc.contributor.author | Tyson, John J. | en |
dc.contributor.author | Cao, Yang | en |
dc.date.accessioned | 2023-08-15T14:43:04Z | en |
dc.date.available | 2023-08-15T14:43:04Z | en |
dc.date.issued | 2023-04 | en |
dc.description.abstract | The crescent-shaped bacterium Caulobacter crescentus divides asymmetrically into a sessile (stalked) cell and a motile (flagellated) cell. This dimorphic cell division cycle is driven by the asymmetric appearance of scaffolding proteins at the cell's stalk and flagellum poles. The scaffolding proteins recruit enzyme complexes that phosphorylate and degrade a master transcription factor, CtrA, and the abundance and phosphorylation state of CtrA control the onset of DNA synthesis and the differentiation of stalked and flagellated cell types. In this study, we use a Turing-pattern mechanism to simulate the spatiotemporal dynamics of scaffolding proteins in Caulobacter and how they influence the abundance and intracellular distribution of CtrA similar to P. Our mathematical model captures crucial features of wild-type and mutant strains and predicts the distributions of CtrA similar to P and signaling proteins in mutant strains. Our model accounts for Caulobacter polar morphogenesis and shows how spatial localization and phosphosignaling cooperate to establish asymmetry during the cell cycle. | en |
dc.description.notes | ACKNOWLEDGMENTS This work was partially supported by the National Science Foundation (USA) under awards MCB-1613741 and CCF-1909122. The funding sources played no role in the design of the study, in the collection, analysis, and interpretation of data, and in writing the manuscript. | en |
dc.description.sponsorship | National Science Foundation (USA) [MCB-1613741, CCF-1909122] | en |
dc.description.version | Published version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1016/j.isci.2023.106513 | en |
dc.identifier.eissn | 2589-0042 | en |
dc.identifier.issue | 4 | en |
dc.identifier.other | 106513 | en |
dc.identifier.pmid | 37128549 | en |
dc.identifier.uri | http://hdl.handle.net/10919/116039 | en |
dc.identifier.volume | 26 | en |
dc.language.iso | en | en |
dc.publisher | Cell Press | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | polar localization | en |
dc.subject | histidine kinase | en |
dc.subject | dna-replication | en |
dc.subject | protease complex | en |
dc.subject | temporal control | en |
dc.subject | division cycle | en |
dc.subject | popz forms | en |
dc.subject | regulator | en |
dc.subject | organization | en |
dc.subject | morphogenesis | en |
dc.title | Turing-pattern model of scaffolding proteins that establish spatial asymmetry during the cell cycle of Caulobacter crescentus | en |
dc.title.serial | iScience | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1-s2.0-S2589004223005904-main.pdf
- Size:
- 5.31 MB
- Format:
- Adobe Portable Document Format
- Description:
- Published version