Global extremal conditions for multi-integer quadratic programming
dc.contributor | Virginia Tech | en |
dc.contributor.author | Wang, Zhenbo | en |
dc.contributor.author | Fang, Sue- Cherng | en |
dc.contributor.author | Gao, David Y. | en |
dc.contributor.author | Xing, Wenxun | en |
dc.contributor.department | Mathematics | en |
dc.date.accessed | 2014-05-09 | en |
dc.date.accessioned | 2014-05-14T13:23:41Z | en |
dc.date.available | 2014-05-14T13:23:41Z | en |
dc.date.issued | 2008-05 | en |
dc.description.abstract | Support vector machine (SVM) is a very popular method for binary data classification in data mining ( machine learning). Since the objective function of the unconstrained SVM model is a non-smooth function, a lot of good optimal algorithms can't be used to find the solution. In order to overcome this model's non-smooth property, Lee and Mangasarian proposed smooth support vector machine (SSVM) in 2001. Later, Yuan et al. proposed the polynomial smooth support vector machine (PSSVM) in 2005. In this paper, a three-order spline function is used to smooth the objective function and a three-order spline smooth support vector machine model (TSSVM) is obtained. By analyzing the performance of the smooth function, the smooth precision has been improved obviously. Moreover, BFGS and Newton-Armijo algorithms are used to solve the TSSVM model. Our experimental results prove that the TSSVM model has better classification performance than other competitive baselines. | en |
dc.description.sponsorship | Tsinghua Basic Research Foundation # 052201070 | en |
dc.description.sponsorship | US NSF Grant # DMI-0553310, CCF-0514768 | en |
dc.identifier.citation | Wang, Z. B.; Fang, S. C.; Gao, D. Y.; Xing, W. X., "Global extremal conditions for multi-integer quadratic programming," J. Industrial and Management Optimization 4(2), 213-225, (2008); DOI: 10.3934/jimo.2008.4.213 | en |
dc.identifier.doi | https://doi.org/10.3934/jimo.2008.4.213 | en |
dc.identifier.issn | 1547-5816 | en |
dc.identifier.uri | http://hdl.handle.net/10919/47976 | en |
dc.identifier.url | http://www.aimsciences.org/journals/displayArticles.jsp?paperID=3258 | en |
dc.language.iso | en_US | en |
dc.publisher | American Institute of Mathematical Sciences | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | quadratic programming | en |
dc.subject | data mining | en |
dc.subject | support vector machine | en |
dc.subject | constrained variational-inequalities | en |
dc.subject | unconstrained optimization | en |
dc.subject | complementarity-problems | en |
dc.subject | global optimization | en |
dc.subject | perfect duality | en |
dc.subject | engineering, multidisciplinary | en |
dc.subject | operations research & management | en |
dc.subject | science | en |
dc.subject | mathematics, interdisciplinary applications | en |
dc.title | Global extremal conditions for multi-integer quadratic programming | en |
dc.title.serial | Journal of Industrial and Management Optimization | en |
dc.type | Article - Refereed | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- global.pdf
- Size:
- 196.18 KB
- Format:
- Adobe Portable Document Format
- Description:
- Main article