Continuous Iterative Guided Spectral Class Rejection Classification Algorithm: Part 1

Files

TR Number

TR-09-09

Date

2009

Journal Title

Journal ISSN

Volume Title

Publisher

Department of Computer Science, Virginia Polytechnic Institute & State University

Abstract

This paper outlines the changes necessary to convert the iterative guided spectral class rejection (IGSCR) classification algorithm to a soft classification algorithm. IGSCR uses a hypothesis test to select clusters to use in classification and iteratively refines clusters not yet selected for classification. Both steps assume that cluster and class memberships are crisp (either zero or one). In order to make soft cluster and class assignments (between zero and one), a new hypothesis test and iterative refinement technique are introduced that are suitable for soft clusters. The new hypothesis test, called the (class) association significance test, is based on the normal distribution, and a proof is supplied to show that the assumption of normality is reasonable. Soft clusters are iteratively refined by creating new clusters using information contained in a targeted soft cluster. Soft cluster evaluation and refinement can then be combined to form a soft classification algorithm, continuous iterative guided spectral class rejection (CIGSCR).

Description

Keywords

Algorithms, Data structures

Citation