VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Dynamics of squeezing fluids: Clapping wet hands

Files

TR Number

Date

2013-08-09

Journal Title

Journal ISSN

Volume Title

Publisher

American Physical Society

Abstract

Droplets splash around when a fluid volume is quickly compressed. This phenomenon has been observed during common activities such as kids clapping with wet hands. The underlying mechanism involves a fluid volume being compressed vertically between two objects. This compression causes the fluid volume to be ejected radially and thereby generate fluid threads and droplets at a high speed. In this study, we designed and performed laboratory experiments to observe the process of thread and drop formation after a fluid is squeezed. A thicker rim at the outer edge forms and moves after the squeezing, and then becomes unstable and breaks into smaller drops. This process differs from previous well-known examples (i.e., transient crown splashes and continuous water bells) in aspects of transient fluid feeding, expanding rim dynamics, or sparsely distributed drops. We compared experimental measurements with theoretical models over three different stages; early squeezing, intermediate sheet-expansion, and later break-up of the liquid thread. In the earlier stage, the fluid is squeezed and its initial velocity is governed by the lubrication force. The outer rim of the liquid sheet forms curved trajectories due to gravity, inertia, drag, and surface tension. At the late stage, drop spacing set by the initial capillary instability does not change in the course of rim expansion, consequently final ejected droplets are very sparse compared to the size of the rim.

Description

Keywords

Drop fragmentation, Thin sheets, Water bells, Surfaces, Impact, Waves, Physics

Citation

Gart, Sean ; Chang, Brian ; Slama, Brice ; et al., Aug 9, 2013. Dynamics of squeezing fluids: Clapping wet hands, PHYSICAL REVIEW E 88(2): 023007. DOI: 10.1103/PhysRevE.88.023007