VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Nonlinear Estimation with State-Dependent Gaussian Observation Noise

dc.contributor.authorSpinello, D.en
dc.contributor.authorStilwell, Daniel J.en
dc.contributor.departmentVirginia Center for Autonomous Systemsen
dc.date.accessed2013-04-25en
dc.date.accessioned2013-04-25T20:55:52Zen
dc.date.available2013-04-25T20:55:52Zen
dc.date.issued2008en
dc.description24 p.en
dc.description.abstractWe consider the problem of estimating the state of a system when measurement noise is a function of the system's state. We propose generalizations of the iterated extended Kalman filter and of the extended Kalman filter that can be utilized when the state estimate distribution is approximately Gaussian. The state estimate is computed by an iterative root-searching method that maximize a maximum likelihood function. For sensor network applications, we also address distributed implementations involving multiple sensors.en
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttp://hdl.handle.net/10919/19356en
dc.identifier.urlhttp://www.unmanned.vt.edu/discovery/reports/VaCAS_2008_02.pdfen
dc.languageEnglishen
dc.publisherVirginia Center for Autonomous Systemsen
dc.relation.ispartofseriesVaCASen
dc.rightsIn Copyrighten
dc.rights.holderCopyright, Virginia Polytechnic Institute and State Universityen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectKalman filteringen
dc.subjectSensor networksen
dc.titleNonlinear Estimation with State-Dependent Gaussian Observation Noiseen
dc.title.alternativeVaCAS-2008-02en
dc.typeTechnical reporten
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VaCAS_2008_02.pdf
Size:
286.2 KB
Format:
Adobe Portable Document Format
Description:
report