Enhanced piezoelectric performance from carbon fluoropolymer nanocomposites

dc.contributorCenter for Energy Harvesting Materials and Systems (CEHMS)en
dc.contributorUniversity of Texas at Dallas. Department of Chemistryen
dc.contributorUniversity of Texas at Dallas. The Alan G. MacDiarmid Nanotech Instituteen
dc.contributorTetramer Technologies L.L.C.en
dc.contributorClemson University. Department of Material Science and Engineering and the Center for Optical Materials Science and Engineering Technologies (COMSET)en
dc.contributorClemson University. Holcombe Electrical and Computer Engineeringen
dc.contributor.authorBaur, Caryen
dc.contributor.authorDiMaio, Jeffrey R.en
dc.contributor.authorMcAllister, Ellioten
dc.contributor.authorHossini, Rezaen
dc.contributor.authorWagener, Earlen
dc.contributor.authorBallato, Johnen
dc.contributor.authorPriya, Shashanken
dc.contributor.authorBallato, Arthuren
dc.contributor.authorSmith, Dennis W. Jr.en
dc.date.accessed2015-04-24en
dc.date.accessioned2015-05-04T20:06:13Zen
dc.date.available2015-05-04T20:06:13Zen
dc.date.issued2012-12-15en
dc.description.abstractThe piezoelectric performance of polyvinylidene fluoride (PVDF) is shown to double through the controlled incorporation of carbon nanomaterial. Specifically, PVDF composites containing carbon fullerenes (C-60) and single-walled carbon nanotubes (SWNT) are fabricated over a range of compositions and optimized for their Young's modulus, dielectric constant, and d(31) piezoelectric coefficient. Thermally stimulated current measurements show a large increase in internal charge and polarization in the composites over pure PVDF. The electromechanical coupling coefficients (k(31)) at optimal loading levels are found to be 1.84 and 2 times greater than pure PVDF for the PVDF-C-60 and PVDF-SWNT composites, respectively. Such property-enhanced nanocomposites could have significant benefit to electromechanical systems employed for structural sensing, energy scavenging, sonar, and biomedical imaging. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4768923]en
dc.format.mimetypeapplication/pdfen
dc.identifier.citationJournal of Applied Physics 112, 124104 (2012); doi: 10.1063/1.4768923en
dc.identifier.doihttps://doi.org/10.1063/1.4768923en
dc.identifier.issn0021-8979en
dc.identifier.urihttp://hdl.handle.net/10919/51993en
dc.identifier.urlhttp://scitation.aip.org/content/aip/journal/jap/112/12/10.1063/1.4768923en
dc.language.isoen_USen
dc.publisherAmerican Institute of Physicsen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectCarbon nanotubesen
dc.subjectComposite materialsen
dc.subjectPiezoelectric materialsen
dc.subjectPolarizationen
dc.subjectCharged currentsen
dc.titleEnhanced piezoelectric performance from carbon fluoropolymer nanocompositesen
dc.title.serialJournal of Applied Physicsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2012_Enhanced_piezoelectric_performance.pdf
Size:
1.47 MB
Format:
Adobe Portable Document Format
Description: