A phase field model to simulate crack initiation from pitting site in isotropic and anisotropic elastoplastic material
dc.contributor.author | Song, Jie | en |
dc.contributor.author | Matthew, Christian | en |
dc.contributor.author | Sangoi, Kevin | en |
dc.contributor.author | Fu, Yao | en |
dc.date.accessioned | 2023-06-20T19:37:00Z | en |
dc.date.available | 2023-06-20T19:37:00Z | en |
dc.date.issued | 2023 | en |
dc.description.abstract | A multiphysics phase field framework for coupled electrochemical and elastoplastic behaviors is presented, where the evolution of complex solid-electrolyte is described by the variation of the phase field variable with time. The solid-electrolyte interface kinetics nonlinearly depends on the thermodynamic driving force and can be accelerated by mechanical straining according to the film rupture-dissolution mechanism. A number of examples in two- and three- dimensions are demonstrated based on the finite element-based MOOSE framework. The model successfully captures the pit-to-crack transition under simultaneous electrochemical and mechanical effects. The crack initiation and growth has been demonstrated to depend on a variety of materials properties. The coupled corrosion and crystal plasticity framework also predict the crack initiation away from the perpendicular to the loading direction. | en |
dc.description.notes | AcknowledgmentsThe authors gratefully acknowledge the National Science Foundation (Award No. 2139383) and Office of Naval Research (Award No. N00014-21-1-2800) for providing the financial support. The authors also acknowledge the Advanced Research Computing at Virginia Tech for providing computational resources and technical support that have contributed to the results reported within this paper. | en |
dc.description.sponsorship | National Science Foundation [2139383]; Office of Naval Research [N00014-21-1-2800] | en |
dc.description.version | Published version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1088/1361-651X/acd132 | en |
dc.identifier.eissn | 1361-651X | en |
dc.identifier.issn | 0965-0393 | en |
dc.identifier.issue | 5 | en |
dc.identifier.other | 55002 | en |
dc.identifier.uri | http://hdl.handle.net/10919/115464 | en |
dc.identifier.volume | 31 | en |
dc.language.iso | en | en |
dc.publisher | IOP Publishing | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | phase field model | en |
dc.subject | coupled electrochemical and elastoplastic behavior | en |
dc.subject | pit-to-crack transition | en |
dc.subject | crystal plasticity | en |
dc.title | A phase field model to simulate crack initiation from pitting site in isotropic and anisotropic elastoplastic material | en |
dc.title.serial | Modelling and Simulation in Materials Science and Engineering | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Song_2023_Modelling_Simul._Mater._Sci._Eng._31_055002.pdf
- Size:
- 2.21 MB
- Format:
- Adobe Portable Document Format
- Description:
- Published version