Small-energy asymptotics of the scattering matrix for the matrix Schrodinger equation on the line
dc.contributor | Virginia Tech | en |
dc.contributor.author | Aktosun, T. | en |
dc.contributor.author | Klaus, Martin | en |
dc.contributor.author | van der Mee, Cornelis | en |
dc.contributor.department | Mathematics | en |
dc.date.accessed | 2014-01-25 | en |
dc.date.accessioned | 2014-01-23T13:49:07Z | en |
dc.date.available | 2014-01-23T13:49:07Z | en |
dc.date.issued | 2001-10 | en |
dc.description.abstract | The one-dimensional matrix Schrodinger equation is considered when the matrix potential is self-adjoint with entries that are integrable and have finite first moments. The small-energy asymptotics of the scattering coefficients are derived, and the continuity of the scattering coefficients at zero energy is established. When the entries of the potential have also finite second moments, some more detailed asymptotic expansions are presented. (C) 2001 American Institute of Physics. | en |
dc.identifier.citation | Aktosun, T; Klaus, M; van der Mee, C, "Small-energy asymptotics of the scattering matrix for the matrix Schrodinger equation on the line," J. Math. Phys. 42, 4627 (2001); http://dx.doi.org/10.1063/1.1398059 | en |
dc.identifier.doi | https://doi.org/10.1063/1.1398059 | en |
dc.identifier.issn | 0022-2488 | en |
dc.identifier.uri | http://hdl.handle.net/10919/25113 | en |
dc.identifier.url | http://scitation.aip.org/content/aip/journal/jmp/42/10/10.1063/1.1398059 | en |
dc.language.iso | en_US | en |
dc.publisher | AIP Publishing | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | inverse scattering | en |
dc.subject | operators | en |
dc.subject | transform | en |
dc.title | Small-energy asymptotics of the scattering matrix for the matrix Schrodinger equation on the line | en |
dc.title.serial | Journal of Mathematical Physics | en |
dc.type | Article - Refereed | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1.1398059.pdf
- Size:
- 390.85 KB
- Format:
- Adobe Portable Document Format
- Description:
- Main article