Gaussian decomposition of beams and other functions

dc.contributorVirginia Tech. Harry Lynde Bradley Department of Electrical Engineeringen
dc.contributor.authorDewolf, David A.en
dc.contributor.departmentElectrical and Computer Engineeringen
dc.date.accessed2015-04-24en
dc.date.accessioned2015-05-05T14:29:48Zen
dc.date.available2015-05-05T14:29:48Zen
dc.date.issued1989-06-15en
dc.description.abstractThe Gabor expansion of a function f_(x) decomposes it into a double sum over integers m and n of a product of basis functions g(x_m X) and Fourier_series exponentials exp(2πi n/X) for given spacing X. The choice of basis function determines the coefficients a m n of the expansion. If f_(x) is band limited, the double sum can for all practical purposes be replaced by a single sum over Gaussian basis functions. This is extremely useful for expansion of multidimensional functions such as beams in phase space. Conditions of validity are given, and several examples illustrate the technique.en
dc.format.extent5 pagesen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationDewolf, D. A. (1989). Gaussian decomposition of beams and other functions. Journal of Applied Physics, 65(12), 5166-5169. doi: 10.1063/1.343144en
dc.identifier.doihttps://doi.org/10.1063/1.343144en
dc.identifier.issn0021-8979en
dc.identifier.urihttp://hdl.handle.net/10919/52001en
dc.identifier.urlhttp://scitation.aip.org/content/aip/journal/jap/65/12/10.1063/1.343144en
dc.language.isoenen
dc.publisherAmerican Institute of Physicsen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectBeamsen
dc.subjectGaussianen
dc.subjectGabor expansionen
dc.titleGaussian decomposition of beams and other functionsen
dc.title.serialJournal of Applied Physicsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1989_Gaussian_decomposition.pdf
Size:
739.28 KB
Format:
Adobe Portable Document Format
Description: