Statistics for Fast-Fourier-Transform Based Numerical Integration Method For The Rayleigh-Sommerfeld Diffraction Formula

Total visits

views
Fast-Fourier-Transform Based Numerical Integration Method For The Rayleigh-Sommerfeld Diffraction Formula 885

Total visits per month

views
May 2024 1
June 2024 2
July 2024 2
August 2024 0
September 2024 3
October 2024 1
November 2024 1

File Visits

views
ao-45-6-1102.pdf 18604

Top country views

views
United States 580
France 46
Germany 34
China 29
United Kingdom 27
South Korea 25
Russia 12
Taiwan 8
Australia 6
Norway 6
Sweden 6
Canada 5
Iran 5
Philippines 5
Romania 5
Hong Kong SAR China 4
Portugal 4
Turkey 4
Ireland 3
Italy 3
Lithuania 3
Bulgaria 2
Israel 2
Mexico 2
Netherlands 2
Singapore 2
Austria 1
Belgium 1
Czechia 1
Denmark 1
Algeria 1
Estonia 1
Spain 1
European Union 1
Finland 1
Greece 1
India 1
Kenya 1
Sri Lanka 1
Morocco 1
Malaysia 1
Poland 1
Saudi Arabia 1
Syria 1
Ukraine 1

Top city views

views
Ashburn 253
Reston 157
Ann Arbor 16
Blacksburg 14
Seongnam 10
Beijing 9
Southend 9
Madison 7
Los Angeles 6
Tønsberg 6
Palo Alto 5
Sunnyvale 5
Moscow 4
Seoul 4
Balingen 3
Central 3
Chicago 3
Columbus 3
Hyattsville 3
Lewes 3
Minneapolis 3
Montreal 3
Mountain View 3
Novosibirsk 3
Old Bridge 3
San Jose 3
Secaucus 3
Shenzhen 3
Vilnius 3
Albuquerque 2
Boardman 2
Braga 2
Brooklyn 2
Bucharest 2
Cambridge 2
Castro Valley 2
Chengdu 2
Cwmbran 2
Dublin 2
Göttingen 2
Hangzhou 2
Houston 2
Nashville 2
New York 2
North Ryde 2
Shanghai 2
Singapore 2
Sofia 2
South El Monte 2
Southampton 2
St Andrews 2
Taichung 2
Urbana 2
Aalen 1
Alexandria 1
Alpharetta 1
Anaheim 1
Angeles City 1
Ankara 1
Athens 1
Avondale Estates 1
Babol 1
Bacoor 1
Barneveld 1
Beaverton 1
Bocaue 1
Bryan 1
Calgary 1
Carral 1
Cary 1
Chandler 1
Chiba-shi 1
Cork 1
Criccieth 1
Cupertino 1
Daejeon 1
Davis 1
Delhi 1
Des Moines 1
Fukui-shi 1
Fukuoka 1
Glen Mills 1
Guadalajara 1
Halle 1
Heppenheim an der Bergstrasse 1
Heverlee 1
Hoffman 1
Hornsey 1
Innsbruck 1
Isfahan 1
Izmir 1
Jeddah 1
Jena 1
Kashiwa 1
Katy 1
Kiev 1
Konan 1
Kongens Lyngby 1
Las Cruces 1
Las Vegas 1