Center for Environmental Applications of Remote Sensing (CEARS)
Permanent URI for this community
The mission of the Center for Environmental Applications of Remote Sensing (CEARS) at Virginia Tech is to provide interdisciplinary leadership in remote sensing through formal instruction, outreach, cooperative research, and consulting. CEARS contributes to applications of the science and technology necessary to better understand effects of both natural and human-induced variability and change within the Earth system.
CEARS focuses on three pressing priorities:
- to further our understanding of the Earth’s major biogeochemical cycles
- to improve understanding of the factors affecting biological diversity and ecosystem structure and functioning
- to develop a systematic understanding of changes in land uses and land cover that are critical to ecosystem functioning and services and, human welfare.
Co-Directors: Valerie Thomas and Yang Shao
Browse
Browsing Center for Environmental Applications of Remote Sensing (CEARS) by Author "Blinn, Christine E."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- An Adaptive Noise Filtering Algorithm for AVIRIS Data with Implications for Classification AccuracyPhillips, Rhonda D.; Blinn, Christine E.; Watson, Layne T.; Wynne, Randolph H. (Department of Computer Science, Virginia Polytechnic Institute & State University, 2008)This paper describes a new algorithm used to adaptively filter a remote sensing dataset based on signal-to-noise ratios (SNRs) once the maximum noise fraction (MNF) has been applied. This algorithm uses Hermite splines to calculate the approximate area underneath the SNR curve as a function of band number, and that area is used to place bands into “bins” with other bands having similar SNRs. A median filter with a variable sized kernel is then applied to each band, with the same size kernel used for each band in a particular bin. The proposed adaptive filters are applied to a hyperspectral image generated by the AVIRIS sensor, and results are given for the identification of three different pine species located within the study area. The adaptive filtering scheme improves image quality as shown by estimated SNRs, and classification accuracies improved by more than 10% on the sample study area, indicating that the proposed methods improve the image quality, thereby aiding in species discrimination.
- Crowds for Clouds: Using an Internet Workforce to Interpret Satellite ImagesYu, Ling; Ball, Sheryl B.; Blinn, Christine E.; Moeltner, Klaus; Peery, Seth; Thomas, Valerie A.; Wynne, Randolph H. (2014)A chronologically ordered sequence of satellite images can be used to learn how natural features of the landscape change over time. For example, we can learn how forests react to human interventions or climate change. Before these satellite images can be used for this purpose, they need to be examined for clouds and cloud shadow that may hide important features of the landscape and would lead to misinterpretation of forest conditions. Once clouds and their shadow have been identified, researchers can then look for other images that include the feature of interest, taken a bit earlier or later in time, to fill in the "missing information" for the original image. Therefore, the task of identifying clouds and their shadow is extremely important for the correct and efficient use of each image. Computer algorithms are only imperfectly suited for this task. The aim of this project is to outsource the cloud interpretation task to a global internet community of "turkers" -workers recruited via amazon.com's online job market known as "Mechanical Turk."
- Feature Reduction using a Singular Value Decomposition for the Iterative Guided Spectral Class Rejection Hybrid ClassifierPhillips, Rhonda D.; Watson, Layne T.; Wynne, Randolph H.; Blinn, Christine E. (Department of Computer Science, Virginia Polytechnic Institute & State University, 2007)Feature reduction in a remote sensing dataset is often desirable to decrease the processing time required to perform a classification and improve overall classification accuracy. This work introduces a feature reduction method based on the singular value decomposition (SVD). This feature reduction technique was applied to training data from two multitemporal datasets of Landsat TM/ETM+ imagery acquired over a forested area in Virginia, USA and Rondonia, Brazil. Subsequent parallel iterative guided spectral class rejection (pIGSCR) forest/nonforest classifications were performed to determine the quality of the feature reduction. The classifications of the Virginia data were five times faster using SVDbased feature reduction without affecting the classification accuracy. Feature reduction using the SVD was also compared to feature reduction using principal components analysis (PCA). The highest average accuracies for the Virginia dataset (88.34%) and for the Rondonia dataset (93.31%) were achieved using the SVD. The results presented here indicate that SVDbased feature reduction can produce statistically significantly better classifications than PCA.
- On-the-Fly Massively Multitemporal Change Detection Using Statistical Quality Control Charts and Landsat DataBrooks, Evan B.; Wynne, Randolph H.; Thomas, Valerie A.; Blinn, Christine E.; Coulston, John W. (Institute of Electrical and Electronics Engineers (IEEE), 2014-06)One challenge to implementing spectral change detection algorithms using multitemporal Landsat data is that key dates and periods are often missing from the record due to weather disturbances and lapses in continuous coverage. This paper presents a method that utilizes residuals from harmonic regression over years of Landsat data, in conjunction with statistical quality control charts, to signal subtle disturbances in vegetative cover. These charts are able to detect changes from both deforestation and subtler forest degradation and thinning. First, harmonic regression residuals are computed after fitting models to interannual training data. These residual time series are then subjected to Shewhart X-bar control charts and exponentially weighted moving average charts. The Shewhart X-bar charts are also utilized in the algorithm to generate a data-driven cloud filter, effectively removing clouds and cloud shadows on a location-specific basis. Disturbed pixels are indicated when the charts signal a deviation from data-driven control limits. The methods are applied to a collection of loblolly pine (Pinus taeda) stands in Alabama, USA. The results are compared with stands for which known thinning has occurred at known times. The method yielded an overall accuracy of 85%, with the particular result that it provided afforestation/deforestation maps on a per-image basis, producing new maps with each successive incorporated image. These maps matched very well with observed changes in aerial photography over the test period. Accordingly, the method is highly recommended for on-the-fly change detection, for changes in both land use and land management within a given land use.