Scholarly Works, School of Animal Sciences
Permanent URI for this collection
Browse
Browsing Scholarly Works, School of Animal Sciences by Author "Akers, Robert Michael"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Effect of Dietary Fish Oil on Mammary Gland Development and Milk Production of Holstein CowBarfourooshi, Hoda Javaheri; Towhidi, Armin; Sadeghipanah, Hassan; Zhandi, Mehdi; Zeinoaldini, Saeed; Dirandeh, Essa; Akers, Robert Michael (2018-10)The aim of this study was to evaluate the effect of feeding oil supplement on mammary gland development and milk production responses in Holstein cows. Ten multi pa rolls Holstein cows (42.2 +/- 9.2 d before calving, 3.25 +/- 0.25 body condition score, and 620 +/- 35 kg body weight) were randomly assigned to treatments. Treatments were a diet with oil added as palm oil (PO; n=5), or fish oil (FO; n=5) given to cows until 63 d in milk. Milk yield was recorded daily, milk composition (fat, protein, lactose, total solid and somatic cell count) was measured weekly and fatty acid profiles of milk fat were determined at first and last week of the experiment. Samples of mammary tissue were obtained at 7 and 63 d in milk by biopsy gun. Tissue slides were analyzed by Image .1 software. Results showed that fish oil supplemented diet compared to the palm oil supplemented diet increased milk production after 6 weeks of lactation (P<0.05), content of polyunsaturated fatty acids milk fat (P<0.05) and docosahexaenoic acid (P<0.01). Moreover, n-6:n-3 ratio was decreased by fish oil supplement (P<0.05). Histological studies showed that FO increased the relative percentage of tissue area occupied by epithelial cells as well as a number of total alveoli in each microscopic field (P<0.05). Data suggested that feeding fish oil during the dry period and early lactation could improve development and function of the mammary gland in the dairy cow.
- Functional and gene network analyses of transcriptional signatures characterizing pre-weaned bovine mammary parenchyma or fat pad uncovered novel inter-tissue signaling networks during developmentPiantoni, Paola; Bionaz, Massimo; Graugnard, Daniel E.; Daniels, Kristy M.; Everts, Robin E.; Rodriguez-Zas, Sandra L.; Lewin, Harris A.; Hurley, Hurley L.; Akers, Robert Michael; Loor, Juan J. (2010-05-26)Background The neonatal bovine mammary fat pad (MFP) surrounding the mammary parenchyma (PAR) is thought to exert proliferative effects on the PAR through secretion of local modulators of growth induced by systemic hormones. We used bioinformatics to characterize transcriptomics differences between PAR and MFP from ~65 d old Holstein heifers. Data were mined to uncover potential crosstalk through the analyses of signaling molecules preferentially expressed in one tissue relative to the other. Results Over 9,000 differentially expressed genes (DEG; False discovery rate ≤ 0.05) were found of which 1,478 had a ≥1.5-fold difference between PAR and MFP. Within the DEG highly-expressed in PAR vs. MFP (n = 736) we noted significant enrichment of functions related to cell cycle, structural organization, signaling, and DNA/RNA metabolism. Only actin cytoskeletal signaling was significant among canonical pathways. DEG more highly-expressed in MFP vs. PAR (n = 742) belong to lipid metabolism, signaling, cell movement, and immune-related functions. Canonical pathways associated with metabolism and signaling, particularly immune- and metabolism-related were significantly-enriched. Network analysis uncovered a central role of MYC, TP53, and CTNNB1 in controlling expression of DEG highly-expressed in PAR vs. MFP. Similar analysis suggested a central role for PPARG, KLF2, EGR2, and EPAS1 in regulating expression of more highly-expressed DEG in MFP vs. PAR. Gene network analyses revealed putative inter-tissue crosstalk between cytokines and growth factors preferentially expressed in one tissue (e.g., ANGPTL1, SPP1, IL1B in PAR vs. MFP; ADIPOQ, IL13, FGF2, LEP in MFP vs. PAR) with DEG preferentially expressed in the other tissue, particularly transcription factors or pathways (e.g., MYC, TP53, and actin cytoskeletal signaling in PAR vs. MFP; PPARG and LXR/RXR Signaling in MFP vs. PAR). Conclusions Functional analyses underscored a reciprocal influence in determining the biological features of MFP and PAR during neonatal development. This was exemplified by the potential effect that the signaling molecules (cytokines, growth factors) released preferentially (i.e., more highly-expressed) by PAR or MFP could have on molecular functions or signaling pathways enriched in the MFP or PAR. These bidirectional interactions might be required to coordinate mammary tissue development under normal circumstances or in response to nutrition.
- Higher plane of nutrition pre-weaning enhances Holstein calf mammary gland development through alterations in the parenchyma and fat pad transcriptomeVailati-Riboni, M.; Bucktrout, R. E.; Zhan, S.; Geiger, A.; McCann, J. C.; Akers, Robert Michael; Loor, J. J. (2018-12-11)Background To reduce costs of rearing replacement heifers, researchers have focused on decreasing age at breeding and first calving. To increase returns upon initiation of lactation the focus has been on increasing mammary development prior to onset of first lactation. Enhanced plane of nutrition pre-weaning may benefit the entire replacement heifer operation by promoting mammary gland development and greater future production. Methods Twelve Holstein heifer calves (< 1 week old) were reared on 1 of 2 dietary treatments (n = 6/group) for 8 weeks: a control group fed a restricted milk replacer at 0.45 kg/d (R, 20% crude protein, 20% fat), or an accelerated group fed an enhanced milk replacer at 1.13 kg/d (EH, 28% crude protein, 25% fat). At weaning (8 weeks), calves were euthanized and sub-samples of mammary parenchyma (PAR) and mammary fat pad (MFP) were harvested upon removal from the body. Total RNA from both tissues was extracted and sequenced using the Illumina HiSeq2500 platform. The Dynamic Impact Approach (DIA) and Ingenuity Pathway Analysis (IPA) were used for pathway analysis and functions, gene networks, and cross-talk analyses of the two tissues. Results When comparing EH vs R 1561 genes (895 upregulated, 666 downregulated) and 970 genes (506 upregulated, 464 downregulated) were differentially expressed in PAR and MFP, respectively. DIA and IPA results highlight a greater proliferation and differentiation activity in both PAR and MFP, supported by an increased metabolic activity. When calves were fed EH, the PAR displayed transcriptional signs of greater overall organ development, with higher ductal growth and branching, together with a supportive blood vessel and nerve network. These activities were mediated by intracellular cascades, such as AKT, SHH, MAPK, and Wnt, probably activated by hormones, growth factors, and endogenous molecules. The analysis also revealed strong communication between MFP and PAR. Conclusions The transcriptomics and bioinformatics approach highlighted key mechanisms that mediate the mammary gland response to a higher plane of nutrition in the pre-weaning period.
- Staphylococcus aureus intramammary challenge in non-lactating mammary glands stimulated to rapidly grow and develop with estradiol and progesteroneEnger, Benjamin D.; Crutchfield, Carly E.; Yohe, Taylor T.; Enger, Kellie M.; Nickerson, Stephen C.; Parsons, Catherine L. M.; Akers, Robert Michael (2018-06-05)Intramammary infections (IMI) are prevalent in non-lactating dairy cattle and their occurrence during periods of significant mammary growth and development (i.e. pregnant heifers and dry cows) is believed to interfere with growth, development, and subsequent milk production. However, direct study of IMI impacts on non-lactating but developing mammary glands is lacking. The objectives of this study were to (1) define how IMI affected total and differential mammary secretion somatic cell counts in mammary glands stimulated to rapidly grow using estradiol and progesterone, and (2) characterize changes in mammary morphology in response to IMI. Mammary growth was stimulated in 19 non-pregnant, non-lactating cows and 2 quarters of each cow were subsequently infused with either saline (n = 19) or Staphylococcus aureus (n = 19). Mammary secretions were taken daily until mammary tissues were collected at either 5 or 10 days post-challenge. Staph. aureus quarter secretions yielded greater concentrations of somatic cells than saline quarters and contained a greater proportion of neutrophils. Staph. aureus mammary tissues exhibited higher degrees of immune cell infiltration in luminal and intralobular stroma compartments than saline quarters. Infected tissues also contained reduced areas of epithelium and tended to have greater amounts of intralobular stroma. Results indicate that IMI in non-lactating glands that were stimulated to grow, produced immune cell infiltration into mammary tissues and secretions, which was associated with changes in mammary tissue structure. The observed reduction of mammary epithelium indicates that IMI impair mammary development in rapidly growing mammary glands, which may reduce future reduced milk yields.